• Title/Summary/Keyword: Multi-switching

Search Result 707, Processing Time 0.03 seconds

Determination of fatty acid methyl esters (FAME) content in aviation turbine fuel using multi-dimensional GC-MS (Multi-dimensional GC-MS를 이용한 항공터빈유의 FAME 함량 분석)

  • Youn, Ju Min;Doh, Jin Woo;Hwang, In Ha;Kim, Seong Lyong;Kang, Yong
    • Journal of the Korean Applied Science and Technology
    • /
    • v.34 no.4
    • /
    • pp.717-726
    • /
    • 2017
  • The current allowable cross-contamination level of fatty acid methyl esters (FAME) in aviation turbine fuel (AVTUR) is 50 mg/kg, due to that the presence of FAME in AVTUR can significantly impact the fuel supply system and jet engine. It has been difficult to analyze the level of FAME in AVTUR, since it is consisted of a lot of hydrocarbons. In this study, thus, a new method using multi-dimensional GC-MS (MDGC-MS) was proposed in order to determine the FAME level in AVTUR effectively. Applying to MDGC-MS with Deans switching system enabled us to detect and quantify the FAME with low carbon numbers such as those derived from coconut oil and palm kernel oil. The matrix effect of MDGC-MS method, which could shift the FAME peaks to slightly longer retention times, was reduced by 20 times compared with that of 1-dimensional GC-MS reference method. This developed method could be suitable for qualitative and quantitative analyses to determine the contamination level of trace FAME in AVTUR.

Generation of Testability on High Density /Speed ATM MCM and Its Library Build-up using BCB Thin Film Substrate (고속/고집적 ATM Switching MCM 구현을 위한 설계 Library 구축 밀 시험성 확보)

  • 김승곤;지성근;우준환;임성완
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.6 no.2
    • /
    • pp.37-43
    • /
    • 1999
  • Modules of the system that requires large capacity and high-speed information processing are implemented in the form of MCM that allows high-speed data processing, high density circuit integration and widely applied to such fields as ATM, GPS and PCS. Hence we developed the ATM switching module that is consisted of three chips and 2.48 Gbps data throughput, in the form of 10 multi-layer by Cu/Photo-BCB and 491pin PBGA which size is $48 \times 48 \textrm {mm}^2$. hnologies required for the development of the MCM includes extracting parameters for designing the substrate/package through the interconnect characterization to implement the high-speed characteristics, thermal management at the high-density MCM, and the generation of the testability that is one of the most difficult issues for developing the MCM. For the development of the ATM Switching MCM, we extracted signaling delay, via characteristics and crosstalk parameters through the interconnect characterization on the MCM-D. For the thermal management of 15.6 Watt under the high-density structure, we carried out the thermal analysis. formed 1.108 thermal vias through the substrate, and performed heat-proofing processing for the entire package so that it can keep the temperature less than $85^{\circ}C$. Lastly, in order to ensure the testability, we verified the substrate through fine pitch probing and applied the Boundary Scan Test (BST) for verifying the complex packaging/assembling processes, through which we developed an efficient and cost-effective product.

  • PDF

Implementation of a High Efficiency Grid-Tied Multi-Level Photovoltaic Power Conditioning System Using Phase Shifted H-Bridge Modules

  • Lee, Jong-Pil;Min, Byung-Duk;Yoo, Dong-Wook
    • Journal of Power Electronics
    • /
    • v.13 no.2
    • /
    • pp.296-303
    • /
    • 2013
  • This paper proposes a high efficiency three-phase cascaded phase shifted H-bridge multi-level inverter without DC/DC converters for grid-tied multi string photovoltaic (PV) applications. The cascaded H-bridge topology is suitable for PV applications since each PV module can act as a separate DC source for each cascaded H-bridge module. The proposed phase shifted H-bridge multi-level topology offers advantages such as operation at a lower switching frequency and a lower current ripple when compared to conventional two level topologies. It is also shown that low ripple sinusoidal current waveforms are generated with a unity power factor. The control algorithm permits the independent control of each DC link voltage with a maximum power point for each string of PV modules. The use of the controller area network (CAN) communication protocol for H-bridge multi-level inverters, along with localized PWM generation and PV voltage regulation are implemented. It is also shown that the expansion and modularization capabilities of the H-bridge modules are improved since the individual inverter modules operate more independently. The proposed topology is implemented for a three phase 240kW multi-level PV power conditioning system (PCS) which has 40kW H-bridge modules. The experimental results show that the proposed topology has good performance.

Study of Multi Function RF Module Using Amplifier and Multiplier (증폭기 및 체배기를 이용한 다기능 RF 모듈에 관한 연구)

  • Kim, Tae-Hoon;Joo, Jae-Hyun;Koo, Kyung-Heon
    • Journal of Advanced Navigation Technology
    • /
    • v.14 no.3
    • /
    • pp.391-396
    • /
    • 2010
  • This paper presents some important research result comparisons for multi function RF modules which use amplifier or frequency multiplier. By using multiplier, multi function module can be realized amply in comparison to multi band module which has separate block for each frequency band. Some com paring analysis among the switching method between separate amplifier and multiplier, the structure using frequency selective reflector, and the module using the defected ground structure. The multi function module which operates as amplifier or multiplier with input frequency is developed and input frequency suppression and output harmonics suppression can be improve d by using defected ground structure.

Cluster-based Minimum Interference Channel Assignment for Multi-Radio Multi-Channel Wireless Mesh Networks (멀티 라디오 멀티 채널 무선 메쉬 네트워크를 위한 클러스터 기반 최소 간섭 채널 할당)

  • Cha, Si Ho;Ryu, Min Woo;Cho, Kuk Hyun
    • Journal of Korea Society of Digital Industry and Information Management
    • /
    • v.6 no.3
    • /
    • pp.103-109
    • /
    • 2010
  • Total performance is improved by minimizing the channel interference between links in wireless mesh networks (WMNs). The paper refines on the CB-CA [1] to be suitable for multi-radio multi-channel (MRMC) WMNs. The CB-CA is the cluster-based channel assignment algorithm for one radio three channel WMN based on IEEE 802.11b/g. The CB-CA does not perform the channel scanning and the channel switching between the cluster heads (CHs) and the edge gateway nodes (EGs). However, the use of co-channel for links between CHs and EGs brings the problem of channel interference among many nodes. We propose and evaluate an improved CB-CA algorithm to solve this problem in MRMC WMNs. The proposed algorithm discriminates between transmission channel and receive channel and assigns channels to each interface randomly and advertises this information to neighbor clusters in order to be assigned no-interference channel between clusters. Therefore, the proposed algorithm can minimize the interference between clusters and also improve QoS, since it can use multiple interfaces and multiple channels.

Study on the Switching behavior of Customers of Local Monopolistic Department Store (지방 독점 백화점 고객들의 전환행동에 관한 연구)

  • Kang, Hee-Suk
    • Journal of Global Scholars of Marketing Science
    • /
    • v.12
    • /
    • pp.29-57
    • /
    • 2003
  • Customers of local monopolistic department store can switch their store more easily than ever due to the rapidly changing environment in distribution system represented by multi-store-strategy of large department stores, increase in discount store and growing non-store retailing system. Consequently, local department stores which enjoyed their business with little competition are forced to study and understand the customer switching behavior. This work is intended to understand the switching behavior characteristics of monopolistic local clepartrrent store users. For the end, previous researches are reviewed firstly, then characteristics of store-switching behavior of custorrers amid rapidly changing distribution environment are studied in view of the relations of dissatisfaction factor, switching barrier, switch intention and custorrer characteristics such as shopping orientation, variety-seeking behavior, degree of openess to competition and sociodemographics. Study shows that; 1) dissatisfaction factor is related to customer characteristics (shopping orientation and degree of openess to competition), 2) switching barrier recognition is related to customer characteristics (degree of openess to competition and sociodemographics) and dissatisfaction factor, 3) intention to switch to expected competitor is related to customer characteristics (shopping orientation, degree of openess to competition and sociodemographics) and switching barrier recognition. Accordingly, switch control strategy of the monopolistic local department store facing competitors' entry into market, must be made, specifically, in a way to understand customer characteristics and to make deliberate effort to reduce customer dissatisfaction.

  • PDF

Direct Imaging of Polarization-induced Charge Distribution and Domain Switching using TEM

  • O, Sang-Ho
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.08a
    • /
    • pp.99-99
    • /
    • 2013
  • In this talk, I will present two research works in progress, which are: i) mapping of piezoelectric polarization and associated charge density distribution in the heteroepitaxial InGaN/GaN multi-quantum well (MQW) structure of a light emitting diode (LED) by using inline electron holography and ii) in-situ observation of the polarization switching process of an ferroelectric Pb(Zr1-x,Tix)O3 (PZT) thin film capacitor under an applied electric field in transmission electron microscope (TEM). In the first part, I will show that strain as well as total charge density distributions can be mapped quantitatively across all the functional layers constituting a LED, including n-type GaN, InGaN/GaN MQWs, and p-type GaN with sub-nm spatial resolution (~0.8 nm) by using inline electron holography. The experimentally obtained strain maps were verified by comparison with finite element method simulations and confirmed that not only InGaN QWs (2.5 nm in thickness) but also GaN QBs (10 nm in thickness) in the MQW structure are strained complementary to accommodate the lattice misfit strain. Because of this complementary strain of GaN QBs, the strain gradient and also (piezoelectric) polarization gradient across the MQW changes more steeply than expected, resulting in more polarization charge density at the MQW interfaces than the typically expected value from the spontaneous polarization mismatch alone. By quantitative and comparative analysis of the total charge density map with the polarization charge map, we can clarify what extent of the polarization charges are compensated by the electrons supplied from the n-doped GaN QBs. Comparison with the simulated energy band diagrams with various screening parameters show that only 60% of the net polarization charges are compensated by the electrons from the GaN QBs, which results in the internal field of ~2.0 MV cm-1 across each pair of GaN/InGaN of the MQW structure. In the second part of my talk, I will present in-situ observations of the polarization switching process of a planar Ni/PZT/SrRuO3 capacitor using TEM. We observed the preferential, but asymmetric, nucleation and forward growth of switched c-domains at the PZT/electrode interfaces arising from the built-in electric field beneath each interface. The subsequent sideways growth was inhibited by the depolarization field due to the imperfect charge compensation at the counter electrode and preexisting a-domain walls, leading to asymmetric switching. It was found that the preexisting a-domains split into fine a- and c-domains constituting a $90^{\circ}$ stripe domain pattern during the $180^{\circ}$ polarization switching process, revealing that these domains also actively participated in the out-of-plane polarization switching. The real-time observations uncovered the origin of the switching asymmetry and further clarified the importance of charged domain walls and the interfaces with electrodes in the ferroelectric switching processes.

  • PDF

Intelligent Phase Plane Switching Control of Pneumatic Artificial Muscle Manipulators with Magneto-Rheological Brake

  • Thanh, Tu Diep Cong;Ahn, Kyoung-Kwan
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.1983-1989
    • /
    • 2005
  • Industrial robots are powerful, extremely accurate multi-jointed systems, but they are heavy and highly rigid because of their mechanical structure and motorization. Therefore, sharing the robot working space with its environment is problematic. A novel pneumatic artificial muscle actuator (PAM actuator) has been regarded during the recent decades as an interesting alternative to hydraulic and electric actuators. Its main advantages are high strength and high power/weight ratio, low cost, compactness, ease of maintenance, cleanliness, readily available and cheap power source, inherent safety and mobility assistance to humans performing tasks. The PAM is undoubtedly the most promising artificial muscle for the actuation of new types of industrial robots such as Rubber Actuator and PAM manipulators. However, some limitations still exist, such as the air compressibility and the lack of damping ability of the actuator bring the dynamic delay of the pressure response and cause the oscillatory motion. In addition, the nonlinearities in the PAM manipulator still limit the controllability. Therefore, it is not easy to realize motion with high accuracy and high speed and with respect to various external inertia loads in order to realize a human-friendly therapy robot To overcome these problems a novel controller, which harmonizes a phase plane switching control method with conventional PID controller and the adaptabilities of neural network, is newly proposed. In order to realize satisfactory control performance a variable damper - Magneto-Rheological Brake (MRB) is equipped to the joint of the manipulator. Superb mixture of conventional PID controller and a phase plane switching control using neural network brings us a novel controller. This proposed controller is appropriate for a kind of plants with nonlinearity uncertainties and disturbances. The experiments were carried out in practical PAM manipulator and the effectiveness of the proposed control algorithm was demonstrated through experiments, which had proved that the stability of the manipulator can be improved greatly in a high gain control by using MRB with phase plane switching control using neural network and without regard for the changes of external inertia loads.

  • PDF

The Carrier-based SVPWM method for voltage balance of flying capacitor multilevel inverter (플라잉 커패시터 멀티-레벨 인버터의 커패시티 잔압 균형을 위한 캐리어 비교방식의 펄스 폭 변조 기법)

  • 강대욱
    • Proceedings of the KIPE Conference
    • /
    • 2000.07a
    • /
    • pp.313-316
    • /
    • 2000
  • This paper proposes a new solution by carrier-based SVPWM method to solve the most serious problem of Flying Capacitor Multi-level Inverter that is unbalance of capacitor voltages The voltage unbalance is occurred by the difference of each capacitor's charging and discharging time applied to Flying Capacitor Multi-level Inverter. It controls the variation of capacitor voltages into the mean'0' during some period by means of new carriers using the leg voltage redundancy in the Inverter. The solution can be easily expanded to the multi-level. Also this method can make the switching loss and conduction loss of device equal by the use of leg voltage redundancy. First the unbalance of capacitor voltage is analyzed and the conventional theory of self-balance using phase-shifted carrier is reviewed. And then the new method that is suitable to the Flying Capacitor Inverter is explained. The simulation results would be shown to verify the proposed method

  • PDF

Model-Based Predictive Control for Interleaved Multi-Phase DC/DC Converters (다상 인터리브드 DC/DC 컨버터를 위한 모델기반의 예측 제어기법)

  • Choi, Dae-Keun;Lee, Kyo-Beum
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.19 no.5
    • /
    • pp.415-421
    • /
    • 2014
  • This study proposes a model-based predictive control for interleaved multi-phase DC/DC converters. The power values necessary to adjust the output voltage in the succeeding are predicted using a converter model. The output power is controlled by selecting the optimal duty cycle. The proposed method does not require controller loops and modulators for converter switching. This method can control the converter by calculating the optimal duty cycle, which minimizes the error between the reference and actual output voltage. The effectiveness of the proposed method is verified through simulations and experiments.