• Title/Summary/Keyword: Multi-stacked layer

Search Result 64, Processing Time 0.028 seconds

Stacked packaging using vertical interconnection based on Si-through via (Si-관통 전극에 의한 수직 접속을 이용한 적층 실장)

  • Jeong, Jin-Woo;Lee, Eun-Sung;Kim, Hyeon-Cheol;Moon, Chang-Youl;Chun, Kuk-Jin
    • Proceedings of the IEEK Conference
    • /
    • 2006.06a
    • /
    • pp.595-596
    • /
    • 2006
  • A novel Si via structure is suggested and fabricated for 3D MEMS package using the doped silicon as an interconnection material. Oxide isolations which define Si via are formed simultaneously when fabricating the MEMS structure by using DRIE and oxidation. Silicon Direct Bonding Multi-stacking process is used for stacked package, which consists of a substrate, MEMS structure layer and a cover layer. The bonded wafers are thinned by lapping and polishing. A via with the size of $20{\mu}m$ is fabricated and the electrical and mechanical characteristics of via are under testing.

  • PDF

Study of Nonvolatile Memory Device with $SiO_2/Si_3N_4$ stacked tunneling oxide (터널링 $SiO_2/Si_3N_4$ 절연막의 적층구조에 따른 비휘발성 메모리 소자의 특성 고찰)

  • Cho, Won-Ju;Jung, Jong-Wan
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2008.06a
    • /
    • pp.189-190
    • /
    • 2008
  • The electrical characteristics of band-gap engineered tunneling barriers consisting of thin $SiO_2$ and $Si_3N_4$ dielectric layers were investigated. The band structure of stacked tunneling barriers was studied and the effectiveness of these tunneling barriers was compared with that of the conventional tunneling barrier. The band-gap engineered tunneling barriers show the lower operation voltage, faster speed and longer retention time than the conventional $SiO_2$ tunnel barrier. The thickness of each $SiO_2$ and $Si_3N_4$ layer was optimized to improve the performance of non-volatile memory.

  • PDF

One-Touch Type Immunosenging Lab-on-a-chip for Portable Point-of-care System (휴대용 POC 시스템을 위한 원터치형 면역 센싱 랩온어칩)

  • Park, Sin-Wook;Kang, Tae-Ho;Lee, Jun-Hwang;Yoon, Hyun-C.;Yang, Sang-Sik
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.56 no.8
    • /
    • pp.1424-1429
    • /
    • 2007
  • This paper presents a simple and reliable one-touch type multi-immunosensing lab-on-a-chip (LOC) detecting antibodies as multi-disease markers using electrochemical method suitable for a portable point-of-care system (POCS). The multi-stacked LOC consists of a PDMS space layer for liquids loading, a PDMS valve layer with 50 im in height for the membrane, a PDMS channel layer for the fluid paths, and a glass layer for multi electrodes. For the disposable immunoassay which needs sequential flow control of sample and buffer liquids according to the designed strategies, reliable and easy-controlled on-chip operation mechanisms without any electric power are necessary. The driving forces of sequential liquids transfer are the capillary attraction force and the pneumatic pressure generated by air bladder push. These passive fluid transport mechanisms are suitable for single-use LOC module. Prior to the application of detection of the antibody as a disease marker, the model experiments were performed with anti-DNP antibody and anti-biotin antibody as target analytes. The flow test results demonstrate that we can control the fluid flow easily by using the capillary stop valve and the PDMS check valves. By the model tests, we confirmed that the proposed LOC is easily applicable to the bioanalytic immunosensors using bioelectrocatalysis.

Planar Microstrip Patch Antenna for 5G Wireless Applications

  • Kim, Jang-Wook;Jeon, Joo-Seong
    • Journal of the Korea Society of Computer and Information
    • /
    • v.27 no.1
    • /
    • pp.33-41
    • /
    • 2022
  • This paper describes a planar microstrip patch antenna designed on dielectric substrate. Two types of planar microstrip patch antennas are studied for the 5G wireless applications, one type is conventional microstrip structure, the other type is stacked microstrip structure fed by coaxial probe. Using electromagnetically coupling method, stacked microstrip patch antenna employing a multi-layer substrate structure was designed. The results indicate that the proposed stacked microstrip patch antenna performs well at 5G wireless service bandwith a broadband from 3.42GHz to 3.70GHz. The impedance bandwidth(VSWR≤2) is 360MHz(10.28%) from 3.42GHz to 3.78GHz. In this paper, through the designing of a stacked microstrip patch antenna, we have presented the availability for 5G wireless repeater system.

A study on the bottom oxide scaling for dielectric in stacked capacitor using L/L vacuum system (L/L 진공시스템을 이용한 적층캐패시터의 하층산화막 박막화에 대한 연구)

  • 정양희;김명규
    • Electrical & Electronic Materials
    • /
    • v.9 no.5
    • /
    • pp.476-482
    • /
    • 1996
  • The multi-dielectric layer SiO$_{2}$/Si$_{3}$N$_{4}$/SiO$_{2}$(ONO) is used to improve electrical capacitance and to scale down the memory device. In this paper, improvement of the capacitance by reducing the bottom oxide thickness in the nitride deposition with load lock(L/L) vacuum system is studied. Bottom oxide thickness under the nitride layer is measured by ellipsometer both in L/L and non-L/L systems. Both results are in the range of 3-10.angs. and 10-15.angs., respectively, independent of the nitride and top oxide thickness. Effective thickness and cell capacitance for SONOS capacitor are in the range of 50-52.angs. and 35-37fF respectively in the case of nitride 70.angs. in L/L vacuum system. Compared with non-L/L system, the bottom oxide thickness in the case of L/L system decreases while cell capacitance increases about 4 fF. The results obtained in this study are also applicable to ONO scaling in the thin bottom oxide region of memory stacked capacitor.

  • PDF

Design of Dual-Polarized and Multi-Band Multi-Layer Patch Antenna (다층구조의 이중편파 다중대역 패치 안테나 설계)

  • Choi, Jong-Ho;Jeong, Bong-Sik
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.16 no.4
    • /
    • pp.156-161
    • /
    • 2015
  • In this paper, a dual-polarized multi-band multi-layer antenna for a vehicle, which operates in the GPS, bluetooth, and DSRC bands, was implemented. The antenna was designed as a multi-layer structure, and a FR4-epoxy substrate with =4.4 and =1.6mm was used. GPS and DSRC antennas have circular polarized characteristics, and a single probe feeding method was applied. Simulated results by Ansys HFSS v11 was compared with the measured ones. The size of the optimally designed antenna is $67mm{\times}67mm{\times}4.8mm$, -10dB bandwidth of the anatenna was measured to be 820MHz, 127MHz, and 862MHz in each band, and 3dB AR bandwidth of the antenna was simulated to be 19MHz and 110MHz in GPS and DSRC bands. The results confirmed that suggested system satisfies the system requirements.

Analysis of Properties Multi-Layered TiN/CrN Thin Films Deposited by AIP Method (AIP법으로 증착된 TiN/CrN 다층박막의 특성 분석)

  • Baek, Min-Sook;Yoon, Dong-Joo;Heo, Ki-Bok;Kim, Byung-Il
    • Korean Journal of Materials Research
    • /
    • v.28 no.7
    • /
    • pp.405-410
    • /
    • 2018
  • TiN and CrN thin films are among the most used coatings in machine and tool steels. TiN and CrN are deposited by arc ion plating(AIP) method. The AIP method inhibits the reaction by depositing a hard, protective coating on the material surface. In this study, the characteristics of multi-layer(TiN/CrN/TiN(TCT), CrN/TiN/CrN(CTC)) are investigated. For comparison, TiN with the same thickness as the multilayer is formed as a single layer and analyzed. Thin films formed as multilayers are well stacked. The characteristics of micro hardness and corrosion resistance are better than those of single layer TiN. The TiN/CrN peak is confirmed because both TCT and CTC are formed of the same component(TiN, CrN), and the phase is first grown in the (111) direction, which is the growth direction. However, the adhesion and abrasion resistance of the multilayer films are somewhat lower.

Characteristics of flexible IZO/Ag/IZO anode on PC substrate for flexible organic light emitting diodes (PC 기판위에 성막한 IZO/Ag/IZO 박막의 특성과 이를 이용하여 제작한 플렉시블 유기발광다이오드의 특성 분석)

  • Cho, Sung-Woo;Jeong, Jin-A;Bae, Jung-Hyeok;Moon, Jong-Min;Choi, Kwang-Hyuk;Kim, Han-Ki
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2007.06a
    • /
    • pp.381-382
    • /
    • 2007
  • IZO/Ag/IZO (IAI) anode films for flexible organic light emitting diodes (OLEDs) were grown on PC (polycarbonate) substrate using DC sputter (IZO) and thermal evaporator (Ag) systems as a function of Ag thickness. To investigate electrical and optical properties of IAI stacked films, 4-point probe and UV/Vis spectrometer were used, respectively. From a IAI stacked film with 12nm-thick Ag, sheet resistance of $6.9\;{\Omega}/{\square}$ and transmittance of above 82 % at a range of 500-550 nm wavelength were obtained. In addition, structural and surface properties of IAI stacked films were analyzed by XRD (X-ray diffraction) and SEM (scanning electron microscopy), respectively. Moreover, IAI stacked films showed dramatically improved mechanical properties when subjected to bending both as a function of number of cycles to a fixed radius. Finally, OLEDs fabricated on both flexible IAI stacked anode and conventional ITO/Glass were fabricated and, J-V-L characteristics of those OLEDs were compared by Keithley 2400.

  • PDF

Structural Characteristics on InAs Quantum Dots multi-stacked on GaAs(100) Substrates

  • Roh, Cheong-Hyun;Park, Young-Ju;Kim, Eun-Kyu;Shim, Kwang-Bo
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.7 no.1
    • /
    • pp.25-28
    • /
    • 2000
  • The InAs self-assembled quantun dots (SAQDS) were grown on a GaAs(100) substrate using a molecular beam epitaxy (MBE) technique. The InAs QDs were multi-stacked to have various layer structures of 1, 3, 6, 10, 15 and 20 layers, where the thickness of the GaAs spacer and InAs QD layer were 20 monolayers (MLs) and 2 MLs, respectively. The nanostructured feature was characterized by photoluminescence (PL) and scanning transmission electron microscopy (STEM). It was found that the highest PL intensity was obtained from the specimen with 6 stacking layers and the energy of the PL peak was split with increasing the number of stacking layers. The STEM investigation exhibited that the quantum dots in the 6 stacking layer structure were well aligned in vertical columns without any deflect generation, whereas the volcano-like deflects were formed vertically along the growth direction over 10 periods of InAs stacking layers.

  • PDF

Thin Film Si-Ge/c-Si Tandem Junction Solar Cells with Optimum Upper Sub- Cell Structure

  • Park, Jinjoo
    • Current Photovoltaic Research
    • /
    • v.8 no.3
    • /
    • pp.94-101
    • /
    • 2020
  • This study was trying to focus on achieving high efficiency of multi junction solar cell with thin film silicon solar cells. The proposed thin film Si-Ge/c-Si tandem junction solar cell concept with a combination of low-cost thin-film silicon solar cell technology and high-efficiency c-Si cells in a monolithically stacked configuration. The tandem junction solar cells using amorphous silicon germanium (a-SiGe:H) as an absorption layer of upper sub-cell were simulated through ASA (Advanced Semiconductor Analysis) simulator for acquiring the optimum structure. Graded Ge composition - effect of Eg profiling and inserted buffer layer between absorption layer and doped layer showed the improved current density (Jsc) and conversion efficiency (η). 13.11% conversion efficiency of the tandem junction solar cell was observed, which is a result of showing the possibility of thin film Si-Ge/c-Si tandem junction solar cell.