This study was to investigate the learning motive types and degree of psychological well-being of middle-aged married women attending the Korea National Open University and to examine the difference in their psychological well-being according to the types of learning motives. For these purposes, a survey was conducted to 263 middle-aged married women from 36 to 60 at the Korea National Open University. The findings were as follows: First, learning motive types of middle-aged women could be classified into 3 types; a non-oriented type, an activity and goal-oriented type and a multi-oriented type. A multi-oriented types were the most popular among those. Second, the overall level of self-respect was above the median, but the life satisfaction level was below the median. Third, there was difference in their self-respect level according to the learning motive types. That is, students who had a multi-oriented learning motive were higher self-respect level than those who had an activity and goal-oriented learning motive. Therefore, lifelong education is very significance in these days when average life span is prolonged.
본 연구는 ICT 활용능력과 학습목적 컴퓨터 사용영향 요인을 파악하기 위해 PISA 2009 한국자료 141개 학교의 학생 4,298명을 대상으로 다층분석을 실시하였다. 연구의 결과로 첫째, ICT 활용능력은 여학생, 사회경제문화적지위, 온라인 자료읽기, 컴퓨터 태도 하위항목의 중요성과 관심은 정적으로 유의하였고, 재미 및 시간왜곡은 부적으로 유의하였다. 학교수준에서는 사회경제문화적지위만이 유의하였다. 둘째, 가정에서 학습목적의 컴퓨터 사용은 ICT 활용능력의 학생수준 영향변인들의 결과와 같았으나 컴퓨터 태도 하위항목의 중요성은 유의하지 않았다. 학교수준에서는 사회경제문화적지위가 정적 영향, 지역규모는 부적 영향을 나타내었다. 셋째, 학교에서 학습목적 컴퓨터 사용은 성별 차이가 없었고, 온라인자료읽기는 정적 영향, 재미와 시간왜곡은 부적인 영향을 주었다. 학교수준에서는 사회경제문화적지위와 컴퓨터 비율은 정적 영향, 지역규모와 학생-교사비율은 부적 영향을 주었다. 연구결과는 다층적 접근을 통해 개인차와 학교 간 차이를 고려한 정보교육 정책이 이뤄져야 함을 시사한다.
IEIE Transactions on Smart Processing and Computing
/
제5권1호
/
pp.17-21
/
2016
This paper investigates the importance of the computational overhead when machine learning methods, such as SVM, LASSO, AdaBoosting and AdaBagging, are used for automatic security classification.
다문화 가정의 정보 격차의 주요 원인인 언어장벽은 다문화 가정 자녀의 낮은 교육수준과 높은 연관성을 가지며, 경제불균형을 높임으로써 추가적인 사회문제화가 될 것으로 예상된다. 다문화가정 학부모는 디지털 기기에 대한 접근성과 자료 활용 능력이 일반국민에 비해 현저하게 떨어지는 정보격차로 인해 기존의 교육 콘텐츠의 효과적 활용은 제약점을 갖고 있다. 이러한 제약점을 해결하기 위해서는 학습자의 이해수준에 적합한 콘텐츠를 제공하는 맞춤형 학습콘텐츠 지원체제의 구축은 필수적이다. 이 논문에서는 다문화가정 학부모의 정보격차 해소를 위한 한한변환 기반 학습콘텐츠 시스템을 설계하고 이를 위한 사용자 맞춤형 학습콘텐츠 지원을 위한 한한변환 시스템의 프로토타입을 결과로 제시한다.
Multi-purpose dams are operated accounting for both physical and socioeconomic factors. This study aims to evaluate the utility of a deep learning algorithm-based model for three multi-purpose dam operation (Seomjin River dam, Juam dam, and Juam Control dam) in Seomjin River. In this study, the Gated Recurrent Unit (GRU) algorithm is applied to predict hourly water level of the dam reservoirs over 2002-2021. The hyper-parameters are optimized by the Bayesian optimization algorithm to enhance the prediction skill of the GRU model. The GRU models are set by the following cases: single dam input - single dam output (S-S), multi-dam input - single dam output (M-S), and multi-dam input - multi-dam output (M-M). Results show that the S-S cases with the local dam information have the highest accuracy above 0.8 of NSE. Results from the M-S and M-M model cases confirm that upstream dam information can bring important information for downstream dam operation prediction. The S-S models are simulated with altered outflows (-40% to +40%) to generate the simulated water level of the dam reservoir as alternative dam operational scenarios. The alternative S-S model simulations show physically inconsistent results, indicating that our deep learning algorithm-based model is not explainable for multi-purpose dam operation patterns. To better understand this limitation, we further analyze the relationship between observed water level and outflow of each dam. Results show that complexity in outflow-water level relationship causes the limited predictability of the GRU algorithm-based model. This study highlights the importance of socioeconomic factors from hidden multi-purpose dam operation processes on not only physical processes-based modeling but also aritificial intelligence modeling.
다문화가정 아동들은 학습 부진 및 학습 결손의 누적으로 이미 심각한 교육격차 문제를 안고 있다. 다문화가정 아동을 위해 수준별 교육이 반드시 필요하지만, 교육현장에서는 다문화가정 아동만을 위해 역량을 집중하기 어려운 현실이다. 이를 위해 수준별 개별 학습에 적합한 교육용 콘텐츠를 다문화가정 아동지도에 필요하나, 다문화가정 아동을 위한 교육용 콘텐츠를 새로 개발하면 예산과 시간이 많이 필요하게 되므로 기존의 교육용 콘텐츠를 다문화 가정 아동도 활용할 수 있도록 개선이 필요하다. 그러므로 본 논문에서는 교육용 콘텐츠 평가도구를 기반으로 다문화가정 아동을 위한 교육용 콘텐츠 적절성 평가도구를 개발하여, 사이버가정학습 4~6학년 국어 콘텐츠를 평가해보고 개선방안을 제시하고자 한다.
As automated essay scoring (AES) has progressed from handcrafted techniques to deep learning, holistic scoring capabilities have merged. However, specific trait assessment remains a challenge because of the limited depth of earlier methods in modeling dual assessments for holistic and multi-trait tasks. To overcome this challenge, we explore providing comprehensive feedback while modeling the interconnections between holistic and trait representations. We introduce the DualBERT-Trans-CNN model, which combines transformer-based representations with a novel dual-scale bidirectional encoder representations from transformers (BERT) encoding approach at the document-level. By explicitly leveraging multi-trait representations in a multi-task learning (MTL) framework, our DualBERT-Trans-CNN emphasizes the interrelation between holistic and trait-based score predictions, aiming for improved accuracy. For validation, we conducted extensive tests on the ASAP++ and TOEFL11 datasets. Against models of the same MTL setting, ours showed a 2.0% increase in its holistic score. Additionally, compared with single-task learning (STL) models, ours demonstrated a 3.6% enhancement in average multi-trait performance on the ASAP++ dataset.
KSII Transactions on Internet and Information Systems (TIIS)
/
제15권2호
/
pp.786-799
/
2021
Road damage detection is important for road maintenance. With the development of deep learning, more and more road damage detection methods have been proposed, such as Fast R-CNN, Faster R-CNN, Mask R-CNN and RetinaNet. However, because shallow and deep layers cannot be extracted at the same time, the existing methods do not perform well in detecting objects with fewer samples. In addition, these methods cannot obtain a highly accurate detecting bounding box. This paper presents a Multi-level Feature Pyramids method based on M2det. Because the feature layer has multi-scale and multi-level architecture, the feature layer containing more information and obvious features can be extracted. Moreover, an attention mechanism is used to improve the accuracy of local boundary boxes in the dataset. Experimental results show that the proposed method is better than the current state-of-the-art methods.
학습자 스스로 학습내용, 학습방법, 학습순서 등을 결정하고 재구조화할 수 있는 학습자 통제 환경에서는 학습자의 특성을 고려한 개별화 학습이 가능하다. 본 연구에서는 웹 기반 교수 학습 과정에서 중요시되고 있는 학습자 특성 변인 중에서 학습자의 학습경로 패턴을 Apriori 알고리즘을 이용하여 분석하고, 유사한 학습경로 패턴을 갖는 학습자들로 그룹화하였다. 이를 기반으로 학습자 개인에게 학습경로, 학습내용. 학습매체, 보조학습콘텐츠, 자료제시유형 등을 다차원적으로 제공하기 위한 다차원 학습경로 패턴 분석 시스템을 설계하고 구현하였다. 개발된 시스템에 대하여 만족도 검사를 실시한 결과 보조학습콘텐츠에 대한 만족도가 "매우 만족" $24.5\%$, "만족" $35.17\%$로 가장 높게 나타났다. 학습자 수준별로는 하위수준의 학습자에 대한 만족도가 "매우 만족" $20.2\%$, "만족" $31.2\%$로 상위수준의 학습자 "매우 만족" $18.4\%$, "만족" $28.54\%$ 보다 높게 나타났다. 개발된 시스템은 드릴-업, 드릴-다운 등의 OLAP 기술을 이용하여 학습자들에게 다양한 각도로 다차원적으로 의미 있는 정보를 제공할 것으로 기대된다.
In this paper, we propose a machine learning-based method for supporting resource management of IoT software platforms in a multi-modal sensing scenario. We assume that an IoT device installed with a oneM2M-compatible software platform is connected with various sensors such as PIR, sound, dust, ambient light, ultrasonic, accelerometer, through different embedded system interfaces such as general purpose input output (GPIO), I2C, SPI, USB. Based on a collected dataset including CPU usage and user-defined priority, a machine learning model is trained to estimate the level of nice value required to adjust according to the resource usage patterns. The proposed method is validated by comparing with a rule-based control strategy, showing its practical capability in a multi-modal sensing scenario of IoT devices.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.