• Title/Summary/Keyword: Multi-hop wireless network

Search Result 384, Processing Time 0.03 seconds

Performance monitoring of timber structures in underground construction using wireless SmartPlank

  • Xu, Xiaomin;Soga, Kenichi;Nawaz, Sarfraz;Moss, Neil;Bowers, Keith;Gajia, Mohammed
    • Smart Structures and Systems
    • /
    • v.15 no.3
    • /
    • pp.769-785
    • /
    • 2015
  • Although timber structures have been extensively used in underground temporary supporting system, their actual performance is poorly understood, resulting in potentially conservative and over-engineered design. In this paper, a novel wireless sensor technology, SmartPlank, is introduced to monitor the field performance of timber structures during underground construction. It consists of a wooden beam equipped with a streamlined wireless sensor node, two thin foil strain gauges and two temperature sensors, which enables to measure the strain and temperature at two sides of the beam, and to transmit this information in real-time over an IPv6 (6LowPan) multi-hop wireless mesh network and Internet. Four SmartPlanks were deployed at the London Underground's Tottenham Court Road (TCR) station redevelopment site during the Stair 14 excavation, together with seven relay nodes and a gateway. The monitoring started from August 2013, and will last for one and a half years until the Central Line possession in 2015. This paper reports both the short-term and long-term performances of the monitored timber structures. The grouting effect on the short-term performance of timber structures is highlighted; the grout injection process creates a large downward pressure on the top surface of the SmartPlank. The short and long term earth pressures applied to the monitored structures are estimated from the measured strains, and the estimated values are compared to the design loads.

Wireless sensor networks for permanent health monitoring of historic buildings

  • Zonta, Daniele;Wu, Huayong;Pozzi, Matteo;Zanon, Paolo;Ceriotti, Matteo;Mottola, Luca;Picco, Gian Pietro;Murphy, Amy L.;Guna, Stefan;Corra, Michele
    • Smart Structures and Systems
    • /
    • v.6 no.5_6
    • /
    • pp.595-618
    • /
    • 2010
  • This paper describes the application of a wireless sensor network to a 31 meter-tall medieval tower located in the city of Trento, Italy. The effort is motivated by preservation of the integrity of a set of frescoes decorating the room on the second floor, representing one of most important International Gothic artworks in Europe. The specific application demanded development of customized hardware and software. The wireless module selected as the core platform allows reliable wireless communication at low cost with a long service life. Sensors include accelerometers, deformation gauges, and thermometers. A multi-hop data collection protocol was applied in the software to improve the system's flexibility and scalability. The system has been operating since September 2008, and in recent months the data loss ratio was estimated as less than 0.01%. The data acquired so far are in agreement with the prediction resulting a priori from the 3-dimensional FEM. Based on these data a Bayesian updating procedure is employed to real-time estimate the probability of abnormal condition states. This first period of operation demonstrated the stability and reliability of the system, and its ability to recognize any possible occurrence of abnormal conditions that could jeopardize the integrity of the frescos.

Multi-Interface Multi-Channel R-HWMP Routing Protocol for End-to-End Bandwidth Reservation in IEEE 802.11s WMNs (IEEE 802.11s 무선 메쉬 네트워크에서 종단간 대역폭 예약을 위한 멀티 인터페이스 멀티 채널 R-HWMP 라우팅 프로토콜)

  • Jung, Whoi Jin;Kim, Bong Gyu;Lee, Jae Yong;Kim, Byung Chul
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.51 no.7
    • /
    • pp.37-48
    • /
    • 2014
  • Wireless mesh networks have emerged as a key technology in environment that needs wireless multi-hop communication without infrastructure and IEEE 802.11s mesh network standard have currently been established. One of big differences between this standard and the legacy IEEE 802.11 is that MCCA MAC is included to support QoS. MCCA supports bandwidth reservations between neighbors, so it can satisfy the QoS of bandwidth guarantee. However, MCCA has dis-advantages as follow; 1) it can not guarantee end-to-end bandwidth, 2) in multi-interface multi-channel wireless environments, the IEEE 802.11s does not provide a bandwidth reservation protocol and a wireless channel assignment etc. In this paper, we have proposed MIMC R-HWMP, which expands R-HWMP that was proposed in our previous work[3], to support multi-interface multi-channel. By simulation, we showed end-to-end bandwidth guarantee and the increase in the available bandwidth in multi-interface multi-channel wireless mesh networks.

Efficient Context-Aware Scheme for Sensor Network in Ubiquitous Devices

  • Shim, Jong-Ik;Sho, Su-Hwan
    • Journal of Korea Multimedia Society
    • /
    • v.12 no.12
    • /
    • pp.1778-1786
    • /
    • 2009
  • Many sensor network applications have been developed for smart home, disaster management, and a wide range of other applications. These applications, however, generally assume a fixed base station as well as fixed sensor nodes. Previous research on sensor networks mainly focused on efficient transmission of data from sensors to fixed sink nodes. Recently there has been active research on mobile sink nodes, sink mobility is one of the most comprehensive trends for information gathering in sensor networks, but the research of an environment where both fixed sink nodes and mobile sinks are present at the same time is rather scarce. This paper proposes a scheme for context-aware by ubiquitous devices with the sink functionality added through fixed sinks under a previously-built, cluster-based multi-hop sensor network environment. To this end, clustering of mobile devices were done based on the fixed sinks of a previously-built sensor network, and by using appropriate fixed sinks, context gathering was made possible. By mathematical comparison with TTDD routing protocol, which was proposed for mobile sinks, it was confirmed that performance increases by average 50% in energy with the number of mobile sinks, and with the number of movements by mobile devices.

  • PDF

Design and Implementation of Cluster based Routing Protocol using Representative Path in Ubiquitous Sensor Network (무선 센서네트워크에서 대표경로를 이용한 클러스터기반 라우팅 프로토콜의 설계 및 구현)

  • Jang, You-Jin;Kim, Ah-Reum;Chang, Jae-Woo
    • The Journal of the Korea Contents Association
    • /
    • v.10 no.6
    • /
    • pp.91-105
    • /
    • 2010
  • A wireless sensor network communication technique has been broadly studied with continuous advances in ubiquitous computing environment. Especially, because the resource of the sensor node is limited, it is important to reduce the communication energy by using an energy-efficient routing protocol. The existing cluster-based routing protocols have a problem that they cannot select a cluster head efficiently by randomly choosing a head. In addition, because the existing cluster-based routing protocols do not support the large scale of network, they cannot be used for various applications. To solve the above problems, we, in this paper, propose a new cluster-based routing protocol using representative paths. The proposed protocol constructs an efficient cluster with distributed cluster heads by creating representative paths based on hop count. In addition, a new routing protocol supports multi-hop routing for data communication between a cluster member node and a cluster head as well as between cluster heads. Finally, we show that our protocol outperforms LEACH and Multihop-LEACH in terms of reliability and scalability.

A Design of Wireless Sensor Node Using Embedded System (임베디드 시스템을 활용한 무선 센서 노드설계)

  • Cha, Jin-Man;Lee, Young-Ra;Park, Yeon-Sik
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.13 no.3
    • /
    • pp.623-628
    • /
    • 2009
  • The emergence of compact and low-power wireless communication sensors and actuators in the technology supporting the ongoing miniaturization of processing and storage allows for entirely the new kinds of embedded systems. These systems are distributed and deployed in environments where they may have been designed into a particular control method, and are often very dynamic. Collection of devices can communicate to achieve a higher level of coordinated behavior. Wireless sensor nodes deposited in various places provide light, temperature, and activity measurements. Wireless sensor nodes attached to circuits or appliances sense the current or control the usage. Together they form a dynamic and multi-hop routing network connecting each node to more powerful networks and processing resources. Wireless sensor networks are a specific-application and therefore they have to involve both software and hardware. They also use protocols that relate to both applications and the wireless network. Wireless sensor networks are consumer devices supporting multimedia applications such as personal digital assistants, network computers, and mobile communication devices. Wireless sensor networks are becoming an important part of industrial and military applications. The characteristics of modem embedded systems are the capable of communicating adapting the different operating environments. In this paper, We designed and implemented sensor network system which shows through host PC sensing temperature and humidity data transmitted for wireless sensor nodes composed wireless temperature and humidity sensor and designs sensor nodes using embedded system with the intention of studying USN.

Energy Efficiency Routing Algorithm for Vessel Ubiquitous Sensor Network Environments (선박 USN에서 에너지 효율성을 위한 라우팅 알고리즘)

  • Choi, Myeong-Soo;Pyo, Se-Jun;Lee, Jin-Seok;Yoon, Seok-Ho;Lee, Seong-Ro
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.36 no.5B
    • /
    • pp.557-565
    • /
    • 2011
  • In this paper, we assume that sensor nodes organize the multi-hop networks, are fixed, and operate as full function devices(FFD). The wireless sensor network(WSN) only consists of mobile nodes without the assistance from the fixed infrastructure, which increases the flexibility of the network. However, it is difficult to perform routing in the WSN, since sensor nodes freely join in and drop out of the network, and some sensor nodes have very low power. We propose the algorithm combining routing schemes based on the bitmap and cluster methods in this paper. Through computer simulations, we show the validity of the proposed algorithm.

An Efficient Reactive Routing Protocol based on the Multi-rate Aware MAC for Mobile Ad Hoc Networks (이동 애드 혹 망에서 다중 전송속도를 갖는 MAC 기반의 효율적인 반응형 라우팅 프로토콜)

  • Lee, Jae-Hwoon;Lim, Yu-Jin;Ahn, Sang-Hyun
    • The KIPS Transactions:PartC
    • /
    • v.15C no.1
    • /
    • pp.45-50
    • /
    • 2008
  • Mobile ad hoc networks (MANETs) allow mobile nodes to communicate among themselves via wireless multiple hops without the help of the wired infrastructure. Therefore, in the MANET, a route setup mechanism that makes nodes not within each other's transmission range communicate is required and, for this, the Ad-hoc On-demand Distance Vector (AODV) was proposed as one of the reactive routing protocols well suited for the characteristics of the MANET. AODV uses the hop count as the routing metric and, as a result, a node selects the farthest neighbor node as its next hop on a route, which results in a problem of deteriorating the overall network throughput because of selecting a relatively low data rate route. In this paper, we propose an efficient reactive routing protocol based on the multi-rate aware MAC. Through the simulations, we analyze the performance of our proposed mechanism and, from the simulation results, we show that our proposed mechanism outperforms the existing mechanism.

Joint Optimization of Mobile Charging and Data Gathering for Wireless Rechargeable Sensor Networks

  • Tian, Xianzhong;He, Jiacun;Chen, Yuzhe;Li, Yanjun
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.13 no.7
    • /
    • pp.3412-3432
    • /
    • 2019
  • Recent advances in radio frequency (RF) power transfer provide a promising technology to power sensor nodes. Adoption of mobile chargers to replenish the nodes' energy has recently attracted a lot of attention and the mobility assisted energy replenishment provides predictable and sustained power service. In this paper, we study the joint optimization of mobile charging and data gathering in sensor networks. A wireless multi-functional vehicle (WMV) is employed and periodically moves along specified trajectories, charge the sensors and gather the sensed data via one-hop communication. The objective of this paper is to maximize the uplink throughput by optimally allocating the time for the downlink wireless energy transfer by the WMV and the uplink transmissions of different sensors. We consider two scenarios where the WMV moves in a straight line and around a circle. By time discretization, the optimization problem is formulated as a 0-1 programming problem. We obtain the upper and lower bounds of the problem by converting the original 0-1 programming problem into a linear programming problem and then obtain the optimal solution by using branch and bound algorithm. We further prove that the network throughput is independent of the WMV's velocity under certain conditions. Performance of our proposed algorithm is evaluated through extensive simulations. The results validate the correctness of our proposed theorems and demonstrate that our algorithm outperforms two baseline algorithms in achieved throughput under different settings.

A Study on Energy Conservative Hierarchical Clustering for Ad-hoc Network (애드-혹 네트워크에서의 에너지 보존적인 계층 클러스터링에 관한 연구)

  • Mun, Chang-Min;Lee, Kang-Whan
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.16 no.12
    • /
    • pp.2800-2807
    • /
    • 2012
  • An ad-hoc wireless network provides self-organizing data networking while they are routing of packets among themselves. Typically multi-hop and control packets overhead affects the change of route of transmission. There are numerous routing protocols have been developed for ad hoc wireless networks as the size of the network scale. Hence the scalable routing protocol would be needed for energy efficient various network routing environment conditions. The number of depth or layer of hierarchical clustering nodes are analyzed the different clustering structure with topology in this paper. To estimate the energy efficient number of cluster layer and energy dissipation are studied based on distributed homogeneous spatial Poisson process with context-awareness nodes condition. The simulation results show that CACHE-R could be conserved the energy of node under the setting the optimal layer given parameters.