• Title/Summary/Keyword: Multi-frequency acoustic system

Search Result 68, Processing Time 0.025 seconds

Nonlinear Behaviors of a Gas-filled Bubble Oscillator with Large Amplitude of Excitation (큰 압력 진폭에 의해 구동되는 기포진동체의 비선형 거동 특성)

  • 김동혁
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.26 no.1
    • /
    • pp.116-124
    • /
    • 2002
  • The bubble model by Keller and Prosperetti is adapted to solve the nonlinear oscillation of a gas bubble. This formulation leads to accurate results since it introduces the energy equation instead of the polytropic assumption for the bubble interior. The numerical method used in this study is stable enough to handle large amplitude of bubble oscillation. The numerical results show some interesting nonlinear phenomena fur the bubble oscillator. The excitation changes the natural frequency of the bubble and makes some harmonic resonances at $f/f_0=1/2, 1/3$ and so on. The natural frequency of a bubble oscillator decreases compared with the linear case result, which means that the nonlinear bubble oscillation system is a "softening"system. In addition, the frequency response curve jumps up or down at a certain frequency. It is also found that there exist multi-valued regions in the frequency response curve depending on the initial conditions of bubble. The dependency of the bubble motion on the initial condition can generate extremely large pressure and temperature which might be the cause of the acoustic cavitation and the sonoluminescence.inescence.

Marine Seismic Survey using a Multi-source System (다중음원 시스템을 이용한 해양 탄성파 탐사)

  • Kim, Hyun-Do;Kim, Jin-Hoo
    • 한국지구물리탐사학회:학술대회논문집
    • /
    • 2006.06a
    • /
    • pp.101-106
    • /
    • 2006
  • Digital technology has been applied to marine seismic survey to develop data processing technology and multi-channel marine seismic survey. In result, high-resolution marine seismic survey ended in a success. Surveys are conducted for various purposes using various frequencies of acoustic sources. A low frequency source is used for deeper penetration and a high frequency source is used for higher resolution survey. In this study, a multi-source system was used for multi-channel marine seismic survey to acquire seismic sections of both low and high frequencies. Variations of depth of penetration and resolution would be used to achieve more accurate analysis of formations. In this study, the multi-source system consists of Bubble Pulser (400 Hz) for low frequency source and Sparker (1.5kHz) for high frequency source.

  • PDF

A Study on the transducer development and multi-point signal and its directivity detection of FBG(Fiber Bragg Grating) hydrophone (FBG(Fiber Bragg Grating) 하이드로폰의 트랜스듀서 개발과 다중점 신호 검출 및 지향성에 관한 연구)

  • 김경복
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.25 no.9B
    • /
    • pp.1551-1562
    • /
    • 2000
  • In the using of FBG developed in home land, we designed and manufactured three types of FBG sound transducers the first in Korea. On FBG transducers manufactured we made an demonstrated on respective frequency response peculiarties in the water and analyzed the special characters. As the experimental result on frequency response peculiarities, we made t possible underwater acoustic detection on C type to maximum 18kHz, And for the purpose of realization on multi-point signal detection on wide scope in the water, in the using of WDM(Wavelength Division Multiplexing) method and passive band-pass filter system, established arrays system and succeeded in multi-point underwater acoustic signal detection to the frequency 1.3KHz out of the two B type FBG transducers. Additionally, it would be possible directivity detection for the objects of its source as the intensity of detection signal varies with the sound source's direction and angle. From now on we prepared a new moment on the practical used study on FBG hydrophone.

  • PDF

A study on development of simulation model of Underwater Acoustic Imaging (UAI) system with the inclusion of underwater propagation medium and stepped frequency beam-steering acoustic array

  • L.S. Praveen;Govind R. Kadambi;S. Malathi;Preetham Shankpal
    • Ocean Systems Engineering
    • /
    • v.13 no.2
    • /
    • pp.195-224
    • /
    • 2023
  • This paper proposes a method for the acoustic imaging wherein the traditional requirement of the relative movement between the transmitter and target is overcome. This is facilitated through the beamforming acoustic array in the transmitter, in which the target is illuminated by the array at various azimuth and elevation angles without the physical movement of the acoustic array. The concept of beam steering of the acoustic array facilitates the formation of the beam at desired angular positions of azimuth and elevation angles. This paper substantiates that the combination of illumination of the target from different azimuth and elevation angles with respect to the transmitter (through the beam steering of beam forming acoustic array) and the beam steering at multiple frequencies (through SF) results in enhanced reconstruction of images of the target in the underwater scenario. This paper also demonstrates the possibility of reconstruction of the image of a target in underwater without invoking the traditional algorithms of Digital Image Processing (DIP). This paper comprehensively and succinctly presents all the empirical formulae required for modelling the acoustic medium and the target to facilitate the reader with a comprehensive summary document incorporating the various parameters of multi-disciplinary nature.

Deep neural network based seafloor sediment mapping using bathymetric features of MBES multifrequency

  • Khomsin;Mukhtasor;Suntoyo;Danar Guruh Pratomo
    • Ocean Systems Engineering
    • /
    • v.14 no.2
    • /
    • pp.101-114
    • /
    • 2024
  • Seafloor sediment mapping is an essential research topic in shallow coastal waters, especially in port development, benthic habitat mapping, and underwater communications. The seafloor sediments can be interpreted by collecting sediment samples directly in the field using a grab sampler or corer. Another method is optical, especially using underwater cameras and videos. Both methods each have weaknesses in terms of area coverage (mechanic) and accurate positioning (optic). The latest technology used to overcome it is the acoustic method (echosounder) with Global Navigation Satellite System (GNSS) Real Time Kinematic (RTK) positioning. Therefore, in this study will propose the classification of seafloor sediments in coastal waters using acoustic method that is Multibeam Echosounder (MBES) multi-frequency with five frequency (200 kHz, 250 kHz, 300 kHz, 350 kHz, and 400 kHz). In this study, the deep neural network (DNN) used the bathymetric multi frequency, bathymetric difference inters frequencies, and bathymetric features from 5 (five) frequencies as input layer and 4 (four) sediment types in 74 (seventy-four) sample sediment as output layer to make a seafloor sediment map. Results of sediment mapping using the DNN method show an overall accuracy of 71.6% (significant) and a kappa coefficient of 0.59 (moderate). The distribution of seafloor sediment in the study area is mainly silt (41.6%), followed by clayey sand (36.6%), sandy silt (14.2%), and silty sand (7.5%).

Performance Analysis of Acoustic Communication Using OFDM Modulation in Underwater (수중에서 OFDM 변조를 이용한 음향 통신의 성능분석)

  • Han, Jeong-Woo;Son, Yoon-Jun;Kim, Ki-Man
    • Journal of Navigation and Port Research
    • /
    • v.34 no.10
    • /
    • pp.769-774
    • /
    • 2010
  • The performance of underwater communication system is influenced on channel characteristic. Delay spread cause by reverberation and multi-path happen the ISI (Inter Symbol Interference) and reduces the communication performance. In this paper, we analyze the performance of acoustic communication experiment in underwater to use the OFDM (Orthogonal Frequency Division Multiplexing) technique for overcome the reverberation and multi-path. As a result, we acquired the BER of modulation techniques. The BER of 2kbps data rate is $1.22{\times}10^{-1}$ and BER of 4 kbps data rate is $2.47{\times}10^{-2}$.

A Study on the OFDM System with Clipping Method for Underwater Communication (수중통신에서 클리핑 기법을 적용한 OFDM 시스템 연구)

  • Han, Jeong-Woo;Kim, Se-Young;Kim, Ki-Man;Jung, Ji-Won;Kim, Seung-Joo;Chun, Seung-Yong;Son, Kwon;Dho, Kyoung-Cheol
    • The Journal of the Acoustical Society of Korea
    • /
    • v.28 no.5
    • /
    • pp.432-440
    • /
    • 2009
  • Recently, the necessity of underwater acoustic communication and demand for transmitting and receiving various data such as voice or high resolution image data are increasing as well. The performance of underwater acoustic communication system is influenced by underwater channel characteristic. Especially, a delay spread caused by reverberation and multi-path induces the ISI (Inter-Symbol-Interference) and reduces the communication performance. In this paper, we study the OFDM (Orthogonal Frequency Division Multiplexing) technique for robust the delay spread in underwater channel. We also use the clipping method to overcome the performance degradation in high PAPR (Peak-to-Average Power Ratio). We confirm the performances of underwater communication system by the underwater channel model simulation model and experiment in small water tank. As a result, the multi-carrier modulation with clipping method presented low BER and the previous single carrier modulation had high BER.

The Enhancement of the Acoustic Image by Combining Bases of Support for SFR (Spatial Frequency Response) (공간주파수응답의 기저대역 확장에 의한 초음파영상의 개선)

  • Song, Dae-Geon;Oh, Tong-In;Kim, Hyun;Jun, Kye-Suk
    • The Journal of the Acoustical Society of Korea
    • /
    • v.22 no.5
    • /
    • pp.408-417
    • /
    • 2003
  • In this paper, we have studied the enhancement of the acoustic image by combining bases of support for SFR (Spatial Frequency Response) taken at multi-frequencies. The scanning acoustic microscope system have been constructed using the quadrature detector that is able to measure the amplitude and phase of the reflected signal simultaneously. Both real and quadrature components of reflected signal have been acquired at 4.4 ㎒ to 5.6 ㎒ reliably and accurately. In this experimental result, better depth resolution can be obtained by numerically combining images taken at several different frequencies. Image intensity have been better about 3.4 times at multi-frequency than one at a single frequency.

Acoustical characteristic predictions of a multi-layer system of a submerged vehicle hull mounted sonar simplified to an infinite planar model

  • Kim, Sung-Hee;Hong, Suk-Yoon;Song, Jee-Hun;Kil, Hyun-Gwon;Jeon, Jae-Jin;Seo, Young-Soo
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.4 no.2
    • /
    • pp.96-111
    • /
    • 2012
  • Hull Mounted Sonar (HMS) is a long range submerged vehicle's hull-mounted passive sonar system which detects low-frequency noise caused by machineries of enemy ships or submerged vehicles. The HMS needs a sound absorption /insulation multi-layer structure to shut out the self-noise from own machineries and to amplify signals from outside. Therefore, acoustic analysis of the multi-layer system should be performed when the HMS is designed. This paper simplified the HMS multi-layer system to be an infinite planar multi-layer model. Also, main excitations that influence the HMS were classified into mechanical, plane wave and turbulent flow excitation, and the investigations for each excitation were performed for various models. Stiffened multi-layer analysis for mechanical excitation and general multi-layer analysis for turbulent flow excitation were developed. The infinite planar multi-layer analysis was expected to be more useful for preliminary design stage of HMS system than the infinite cylindrical model because of short analysis time and easiness of parameter study.

Acoustic variations associated with congenital heart disease (선천성 심장병 환아에서 음향학적 요소의 변동)

  • Oh, Jung Eun;Choi, Yoon Mi;Kim, Sun Jun;Joo, Chan Uhng
    • Clinical and Experimental Pediatrics
    • /
    • v.53 no.2
    • /
    • pp.190-194
    • /
    • 2010
  • Purpose : To investigate the nature of deviant voice physiology in preoperative children with congenital heart disease. Methods : Ninety-four children with congenital heart disease were enrolled. Their cries and related acoustic variables (fundamental frequency, duration, noise to harmonic ratio, jitter and shimmer) were analyzed using a multi-dimensional voice program. Results : The average fundamental frequency showed a significant decrease in patent ductus arteriosus, ventricular septal defect, and tetralogy of Fallot, except in atrial septal defect and pulmonary stenosis. The length of the analyzed sample (duration) did not show a significant difference when compared with the control group. There was a significant increase in jitter percent in ventricular septal defect, patent ductus arteriosus, and atrial septal defect. There was an increase in shimmer in ventricular septal defect, patent ductus arteriosus, and atrial septal defect. The noise-to-harmonic ratio increased in ventricular septal defect, patent ductus arteriosus, and atrial septal defect but there was no significant difference in pulmonary stenosis and tetralogy of Fallot. While analyzing acoustic variables, the voice change was significantly higher, especially in patent ductus arteriosus followed by ventricular septal defect and atrial septal defect. Most of these acoustic variables were deviant in left-to-right shunt lesions in congenital heart disease, especially in patent ductus artriosus. Conclusion : The results of the voice change analysis of preoperative children with congenital heart disease revealed that the acoustic variables differed by each congenital heart disease. Moreover, the acoustic variables were prominently deviant in congenital heart disease with left-to-right shunts.