DOI QR코드

DOI QR Code

A study on development of simulation model of Underwater Acoustic Imaging (UAI) system with the inclusion of underwater propagation medium and stepped frequency beam-steering acoustic array

  • L.S. Praveen (Ramaiah University of Applied Sciences) ;
  • Govind R. Kadambi (Ramaiah University of Applied Sciences) ;
  • S. Malathi (Ramaiah University of Applied Sciences) ;
  • Preetham Shankpal (GE Health science)
  • Received : 2022.12.05
  • Accepted : 2023.05.17
  • Published : 2023.06.25

Abstract

This paper proposes a method for the acoustic imaging wherein the traditional requirement of the relative movement between the transmitter and target is overcome. This is facilitated through the beamforming acoustic array in the transmitter, in which the target is illuminated by the array at various azimuth and elevation angles without the physical movement of the acoustic array. The concept of beam steering of the acoustic array facilitates the formation of the beam at desired angular positions of azimuth and elevation angles. This paper substantiates that the combination of illumination of the target from different azimuth and elevation angles with respect to the transmitter (through the beam steering of beam forming acoustic array) and the beam steering at multiple frequencies (through SF) results in enhanced reconstruction of images of the target in the underwater scenario. This paper also demonstrates the possibility of reconstruction of the image of a target in underwater without invoking the traditional algorithms of Digital Image Processing (DIP). This paper comprehensively and succinctly presents all the empirical formulae required for modelling the acoustic medium and the target to facilitate the reader with a comprehensive summary document incorporating the various parameters of multi-disciplinary nature.

Keywords

References

  1. Al-Zhrani, S., Bedaiwi, N.M., El-Ramley, I.F., Barasheed, A.Z., Abduldaiem, A., Al-Hadeethi1, Y. and Umar, A. (2021), "Underwater optical communications: A brief overview and recent developments", Engineered Sci., 16, 146-186. https://doi.org/10.30919/es8d574.
  2. Awan, K.M., Shah, P.A., Iqbal, K., Gillani, S., Ahmad, W. and Nam, Y. (2019), "Underwater wireless sensor networks: A review of recent issues and challenges", J. Wireless Commun. Mobile Comput., 2-21. https://doi.org/10.1155/2019/ 6470359.
  3. Basagni, S., Conti, M., Giordano, S. and Stojmenovic, I. (2013), Mobile Ad Hoc Networking: Cutting Edge Directions, Second Ed., The Institute of Electrical and Electronics Engineers, Inc.
  4. Christ, R.D. and Wernli, R.L. (2014), The ROV Manual-The Ocean Environment, Butterworth-Heinemann Elsevier Ltd., 21-52. https://doi.org/10.1016/B978-0-08-098288-5.00002-6.
  5. Cruz, N. (2011), "Autonomous underwater vehicles", Intech open, 113-173.
  6. Gonzalez-Garcia, J., Gomez-Espinosa, A., Cuan-Urquizo, E., Garcia-Valdovinos, L.G., Salgado-Jimenez, T. and Cabello, J.A.E. (2020), "Autonomous underwater vehicles: localization, navigation, and communication for collaborative missions", Appl. Sci., 10(4), 1256, https://doi.org/10.3390/app10041256.
  7. Jarina Raihan A., Emeroylariffion Abas, P.G. and De Silva, L.C. (2021), "Restoration of underwater images using depth and transmission map estimation, with attenuation priors", Ocean Syst. Eng., 11(4), 331-351. https://doi.org/10.12989/ose.2021.11.4.331.
  8. Johnson, S.F. (2009), "Synthetic aperture sonar image statistics", PhD Thesis, The Pennsylvania State University.
  9. Kularia, Y., Kohli, S. and Bhattacharya, P.P. (2016), "Analyzing propagation delay, transmission loss and signal to noise ratio in acoustic channel for underwater wireless sensor networks", Proceedings of the IEEE 1st International Conference on Power Electronics, Intelligent Control and Energy Systems (ICPEICES), 1-5. https://doi.org/10.1109/ICPEICES.2016.7853300.
  10. Lee, S.J., Roh, M.I. and Oh, M.J. (2020), "Image-based ship detection using deep learning", Ocean Syst. Eng., 10(4), 415-434. https://doi.org/10.12989/ose. 2020.10.4.415.
  11. Liu, X., Sun, C., Yang, Y. and Zhuo, J. (2017), "Low sidelobe range profile synthesis for sonar imaging using stepped-frequency pulses", IEEE Geosci. Remote Sens. Lett., 14(2), 218-221. https://doi.org/10.1109/LGRS.2016.2635154.
  12. Marx, D., Nelson, M., Chang, E., Gillespie, W., Putney, A. and Warman, K. (2000), "An introduction to synthetic aperture sonar", Proceedings of the 10th IEEE Workshop on Statistical Signal and Array Processing (Cat. No.00TH8496), 717-721. https://doi.org/10.1109/SSAP.2000. 870220.
  13. Massel, S.R. (2015), Internal gravity waves in the shallow seas, Springer International Publishing Switzerland
  14. Masud-Ul-Alam, M., Khan, M.A.I., Barrett, B.S. and Rivero-Calle, S. (2022), "Surface temperature and salinity in the northern Bay of Bengal: in situ measurements compared with satellite observations and model output", J. Appl. Remote Sens., 16(1), 018502-1-018502-19. https://doi.org/10.1117/1.JRS.16.018502.
  15. Menna, B.V., Acosta, G.G. and Villar, S.A. (2016), "Underwater acoustic channel model for shallow waters", Proceedings of the 23rd IEEE/OES South American International Symposium on Oceanic Engineering (SAISOE), 1-7, https://doi.org/10.1109/SAISOE.2016.7922471.
  16. Praveen, L.S., Kadambi, G.R., Malathi, S. and Shankapal, P. (2020), "Computation of near-field and far-field radiation characteristics of acoustic transducers for underwater acoustic imaging", Int. J. Commun. Antenna Propagation, 10(3), 145-150. https://doi.org/10.15866/irecap.v10i3.18684
  17. Praveen, L.S., Kadambi, G.R., Malathi, S. and Shankapal, P. (2021), "A generic approach for computation of near-field and far-field pattern of beamforming acoustic transducer array", Int. J. Commun. Antenna Propagation, 11(6), 414-439. https://doi.org/10.15866/irecap.v11i6.21489
  18. Shrivastava, A. (2018), Introduction to Plastics Engineering, William Andrew Elsevier Ltd., 49-110 https://doi.org/10.1016/C2011-0-07796-7.
  19. Sung, M. and Yu, S.C. (2020), "Sonar-based yaw estimation of target object using shape prediction on viewing angle variation with neural network", Ocean Syst. Eng., 10(4), 435-449. https://doi.org/10.12989/ose.2020.10.4.435.
  20. Tenzer, R., Novak, P. and Gladkikh, V. (2011), "On the accuracy of the bathymetry-generated gravitational field quantities for a depth-dependent seawater density distribution", Studia Geophysica et Geodaetica, 55, 609-626. https://doi.org/10.1007/s11200-010-0074-y
  21. Trujillo, A. and Thurman, H. (2014), Essentials of Oceanography, United Kingdom: Pearson Prentice Hall.
  22. Vigness-Raposa, K.J., Scowcroft, G., Miller, J.H. and Ketten, D. (2012), "Discovery of sound in the sea: An online resource", (Eds., Popper, A.N. and Hawkins, A.), The Effects of Noise on Aquatic Life. Advances in Experimental Medicine and Biology, 730, Springer, New York, NY. https://doi.org/10.1007/978-1-4419-7311-5_30.
  23. Wang, X., Zhang, X. and Zhu, S. (2015), "Upsampling based back projection imaging algorithm for multireceiver synthetic aperture Sonar", Proceedings of the International Industrial Informatics and Computer Engineering Conference, 1610-1615.
  24. Wang, Y., Liu, Y. and Guo, Z. (2012), "Three-dimensional ocean sensor networks: A survey", J. Ocean, Univ. China, 11, 436-450. https://doi.org/10.1007/s11802-012-2111-7.
  25. Webb, P. (2020), Introduction to Oceanography, In: University, R.W. (Ed.) Open Publishing. United States: Creative Commons Attribution 4.0 International License. 
  26. Yang, L., Zhou, S., Zhao, L. and Xing, M. (2018), "Coherent auto-calibration of APE and NsRCM under fast back-projection image formation for airborne SAR imaging in highly-squint angle", Remote Sens., 10, 321. https://doi.org/10.3390/rs10020321.
  27. Yang, R., Li, H., Li, S., Zhang, P., Tan, L., Gao, X. and Kang, X. (2018), "Stepped-frequency waveform and SAR imaging in: High-resolution microwave imaging", Springer Singapore, 119-159.