• 제목/요약/키워드: Multi-forming

검색결과 508건 처리시간 0.028초

다중곡률 판재성형을 위한 비정형롤판재성형 공정의 형상설계변수에 대한 연구 (Effect of Shape Design Variables on Flexibly-Reconfigurable Roll Forming of Multi-curved Sheet Metal)

  • 손소은;윤준석;김정;강범수
    • 소성∙가공
    • /
    • 제23권2호
    • /
    • pp.103-109
    • /
    • 2014
  • Flexibly-reconfigurable roll forming (FRRF), which is a sheet forming process for multi-curved sheet metal, may solve both the economic and technical problems incurred in using a conventional die forming process. In the FRRF process, the multi-curved sheet metal is formed by different strain distributions on the sheet metal, and the reconfigurable rollers are used as tools during the forming. Therefore, a thorough investigation focused on the reconfigurable rollers is required for the realization of the FRRF process prior to the fabrication of FRRF machine. In the current study, a series of finite element simulations were conducted to study the load distributions experienced by the reconfigurable roller. In order to verify the shape design variables, the effect of the metal thickness on the curvatures of sheet is also presented.

탐색 알고리즘을 이용한 냉간 단조 공정 설계 (Multi-Stage Cold Forging Process Design with A* Searching Algorithm)

  • 김홍석;임용택
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 1995년도 추계학술대회논문집
    • /
    • pp.30-36
    • /
    • 1995
  • Conventionally design for multi-stage cold forging depends on the designer's experience and decision-making. Due to such non-deterministic nature of the process sequence design, a flexible inference engine is needed for process design expert system. In this study, A* searching algorithm was introduced to arrive at the vetter process sequence design considering the number of forming stages and levels of effective strain, effective stress, and forming load during the porcess. In order to optimize the process sequence in producing the final part, cost function was defined and minimized using the proposed A* searching algorithm. For verification of the designed forming sequences, forming experiments and finite element analyses were carried out in the present investigation. The developed expert system using A* searching algorithm can produce a flexible design system based on changes in the number of forming stages and weights.

  • PDF

다점 무금형 성형의 조선 적용 연구 (Study on Application of Multi-point Dieless Forming for Shipbuilding)

  • 하석문;신진욱;한용섭;한명수;최우현;이해우;박종우
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2005년도 추계학술대회 논문집
    • /
    • pp.152-155
    • /
    • 2005
  • A method of three-dimensional curved surface generation was studied for multi-point dieless forming (MPDF) in the shipbuilding industry. Three-dimensional coordinates of punch elements were obtained from objective surfaces using a proprietary CAD program. MPDF surfaces were generated by adjusting the height of punch elements in accordance with the coordinates. Some problems, such as collision of punch elements and contact between plates and punch bodies, were anticipated from the analysis of the results. A twisted surface was formed successfully by MPDF in a laboratory scale, which suggests possibility of application of the technology to the shipbuilding industry.

  • PDF

미세 다심선 정수압 압출 및 단선 무금형 신장 성형 기술 (Multi-Filament Hydrostatic Extrusion and Fine Wire Dieless Stretching Technology)

  • 박훈재;김창훈
    • 한국기계가공학회지
    • /
    • 제5권4호
    • /
    • pp.79-85
    • /
    • 2006
  • Multi-filament hydrostatic extrusion was developed as a fine wire manufacturing process and wire forming experiments were conducted. Also, single wire stretch forming process was proposed in the possibility of obtaining long wire with constant cross-section. In the multi filament extrusion since the workpiece, die and forming facility are in the macro forming circumstance, fine wire and fine hole structure with less than a few micrometer can be easily obtained. Although stretch forming does not use a die in order to avoid the friction problem between the workpiece and the die, it is necessary to have high level of technology to maintain cross-sectional shape and measure in longitudinal direction.

  • PDF

마이크로 박판 밸브 성형을 위한 마이크로 프레스 개발 (Development of Micro Press for Forming the Micro Thin Foil Valve)

  • 이혜진;이낙규;이형욱
    • 한국공작기계학회논문집
    • /
    • 제16권5호
    • /
    • pp.166-171
    • /
    • 2007
  • In this paper Research development about a micro metal forming manufacturing system has been developed. A micro forming system has been achieved in Japan and it's developed micro press is limited to single forming process. To coincide with the purpose to be more practical, research and development is necessary about the press which the multi forming process is possible. We set the development of the equipment including micro deep drawing, micro punching and micro restriking process to the goal. To achieve this goal, we set the application product to a micro thin foil valve which is used in the micro pump module. The compound die set has been designed and manufactured to make two step process. The material of thin foil valve is SUS-304 and its thickness is 50$\mu$m. We can get a good forming results from micro punching experiments in this paper.

자동차용 모터케이스 성형용 멀티포머의 공정개선에 관한 유한요소해석 (Finite Element Analysis on Process Improvement of the Multi-Forming for the Motor-Case of an Automobile)

  • 김형진;배원병;조종래
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2005년도 춘계학술대회 논문집
    • /
    • pp.467-470
    • /
    • 2005
  • There are about 10 motors for tile actuator of the automation system in an auto-mobile recently. The performance of the motor-case is much related to the noise and the vibration of an auto-mobile Multi-Forming process is so much the better than existing deep-drawing or Multi-step forming by press by less cost, installation and staff. But there isn't the specific and general process design, so we aren't good at competition. So in the first step, I want to study about the core design for the multi-forming process. We can access by the elasto-plastic theory and the finite element method, and we use a commercial package of the Deform-2D and, Deform-3D which is based on three-dimensional elasto-plastic finite element, evaluated propriety oi the package. The evaluation of the package propriety was simulated by simple bending example. It was found the elasto-plastic theory was mostly in agreement with the simulation. We proposed that three type of section for the core and analyzed by finite element method (Deform-2D). We can get the best result with the ellipse type core. Then we apply the result of the preceding analysis to the finite element method (Deform-3D). In 3D-finite element analysis, we can get the result of 8/100mm-roundness. This result can help the improvement of the multi-forming process.

  • PDF

진공점진성형에서 복합공구경로가 차량용 외판부 도어패널의 변형특성에 미치는 영향 분석 (Deformation Characteristics of an Automotive Outer Door Panel by Vacuum-assisted Incremental Sheet Forming using Multi-tool paths)

  • 윤형원;박남수
    • 소성∙가공
    • /
    • 제32권4호
    • /
    • pp.208-214
    • /
    • 2023
  • This paper discusses the deformation characteristics of a scaled-down automotive outer door panel with vacuum-assisted incremental sheet forming. The vacuum condition between the die and Al6052-H32 sheet with a thickness of 1.0 mm is reviewed with the goal of improving the geometrical accuracy of the target product. The material flow according to the forming tool path, including the multi-tool path and conventional contour tool path, is investigated considering the degradation of the pillow effect. To reduce friction between the tool and the sheet during incremental forming, automotive engine oil (5W-30) is used as a lubricant, and the strain field on the surface of the formed product is analyzed using ARGUS. By comparing the geometry and material flow characteristics of products under different test conditions, it is confirmed that the product surface quality can be significantly improved when the vacuum condition is employed in conjunction with a multi-tool path strategy.

알루미늄 선박의 외판 가공을 위한 인장성형 시스템 연구 (Multi Point Press Stretch Forming System Applied to Curved Hull Plate of Aluminum Ship)

  • 배철남;황세윤;이장현;정우철;김광호
    • 한국CDE학회논문집
    • /
    • 제17권3호
    • /
    • pp.188-197
    • /
    • 2012
  • Recently, aluminum ships are constructed more than ever because of the environmental pollution generated by FRP (Fiber Reinforced Plastic) ships. In particular, FRP ships have been replaced by the Aluminum ships. The forming process of the curved aluminum plate has been performed only by labor works without systematic technique. Therefore, it is difficult to construct the aluminum ship that the design satisfies both required propulsion performance and hull design. Present study introduces a MPSF (Multi Point Stretching Forming) that is a flexible manufacturing technique to form large sheet panels of doubly curvature. The hull pieces are stretch-formed over the MPSD (multi-point stretching die) generated by the punch element matrix. In this study, MPSF is applied to deform the doubly curved surfaces of aluminum ship. The forming system including FEA (finite element analysis) of the processes for stretching the plate were carried out by static implicit analysis is suggested. Residual deformation of the surface is modeled by an elasto-plastic contact phenomena while the forming process is simulated by FEA. Finally, the proposed system is also validated, comparing the deformed shape by MPSF with that of object surfaces.

다중곡률형상의 판재성형을 위한 가변롤성형 기술 (Flexible Roll Forming Technology for Multi-Curved Sheet Metal Forming)

  • 윤준석;손소은;송우진;김정;강범수
    • 소성∙가공
    • /
    • 제22권5호
    • /
    • pp.243-249
    • /
    • 2013
  • The multi-point forming (MPF) process for three-dimensional curved sheet metal has been developed as an alternative to the conventional die forming process since MPF allows the manufacturing of various shapes using one die set and reduce the cost of production. However, the MPF process cannot provide high quality products yet due to defects occurring in the sheet such as dimples and wrinkles. It can also lead to economic loss because of long tool setup time and additional machining required outside of the sheet formed area. In this study, a new sheet metal forming method, called flexible roll forming (FRF), is proposed to solve the problems of existing processes for three-dimensional curved sheet metal. This progressive process utilizes adjusting rods, as well as upper and lower flexible rollers as forming tools. In contrast with the existing processes, FRF can reduce the additional production costs because of the possible blank size for the part longitudinal direction, which is unrestricted. In this research, methods and procedures of the flexible roll forming technology are described. Numerical forming simulations of representative three-dimensional curved sheet products are also carried out to demonstrate the feasibility of this technology.

수치 및 실험적 접근을 통한 다점무금형성형기술 연구 (Study on Multi-point Dieless Forming Technology Based on Numerical and Experimental Approach)

  • 허성찬;서영호;구태완;송우진;김정;강범수
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2008년도 춘계학술대회 논문집
    • /
    • pp.220-223
    • /
    • 2008
  • Large curved plate blocks are widely used to construct hull structure in shipbuilding industry. Most curved plates are manufactured by using manual method called as line heating that use deformation caused by residual stress after local heating along a line which is perpendicular to the curvature direction. However, its working environment is poor and its formability is totally dependent on an experienced technician. In view of that, multi-point dieless forming (MDF) technology that use reconfigurable punch arrays instead of one piece die is proposed in this study. The MDF process is based on a concept of equivalent die surface made by numbers of punches which has round tip at the end of it. In this study, numerical simulation for common curvature type such as saddle shape was carried out. In addition, experiments in the plate forming process were also conducted to compare with the numerical results in view of final configuration. Consequently, it was noted that the proposed dieless forming method has considerable feasibility to substitute the new process for conventional manual method.

  • PDF