International Journal of Computer Science & Network Security
/
v.23
no.4
/
pp.39-47
/
2023
This study compares various transformation techniques for multifocus image fusion. Multi-focus image fusion is a procedure of merging multiple images captured at unalike focus distances to produce a single composite image with improved sharpness and clarity. In this research, the purpose is to compare different popular frequency domain approaches for multi-focus image fusion, such as Discrete Wavelet Transforms (DWT), Stationary Wavelet Transforms (SWT), DCT-based Laplacian Pyramid (DCT-LP), Discrete Cosine Harmonic Wavelet Transform (DC-HWT), and Dual-Tree Complex Wavelet Transform (DT-CWT). The objective is to increase the understanding of these transformation techniques and how they can be utilized in conjunction with one another. The analysis will evaluate the 10 most crucial parameters and highlight the unique features of each method. The results will help determine which transformation technique is the best for multi-focus image fusion applications. Based on the visual and statistical analysis, it is suggested that the DCT-LP is the most appropriate technique, but the results also provide valuable insights into choosing the right approach.
In this paper, a novel hybrid method for multi-focus image fusion is proposed. The method combines the advantages of wavelet transform-based methods and focus-measure-based methods to achieve an improved fusion result. The input images are first decomposed into different frequency sub-bands using the discrete wavelet transform (DWT). The focus measure of each sub-band is then calculated using the Laplacian of Gaussian (LoG) operator, and the sub-band with the highest focus measure is selected as the focused sub-band. The focused sub-band is sharpened using an unsharp masking filter to preserve the details in the focused part of the image.Finally, the sharpened focused sub-bands from all input images are fused using the maximum intensity fusion method to preserve the important information from all focus images. The proposed method has been evaluated using standard multi focus image fusion datasets and has shown promising results compared to existing methods.
KSII Transactions on Internet and Information Systems (TIIS)
/
v.18
no.7
/
pp.1907-1928
/
2024
In recent years, multi-focus image fusion has emerged as a prominent area of research, with transformers gaining recognition in the field of image processing. Current approaches encounter challenges such as boundary artifacts, loss of detailed information, and inaccurate localization of focused regions, leading to suboptimal fusion outcomes necessitating subsequent post-processing interventions. To address these issues, this paper introduces a novel multi-focus image fusion technique leveraging the Swin Transformer architecture. This method integrates a frequency layer utilizing Wavelet Transform, enhancing performance in comparison to conventional Swin Transformer configurations. Additionally, to mitigate the deficiency of local detail information within the attention mechanism, Convolutional Neural Networks (CNN) are incorporated to enhance region recognition accuracy. Comparative evaluations of various fusion methods across three datasets were conducted in the paper. The experimental findings demonstrate that the proposed model outperformed existing techniques, yielding superior quality in the resultant fused images.
This paper presents a novel approach to multi-focus image fusion using light field cameras. The proposed neural network, LFFCNN (Light Field Focus Convolutional Neural Network), is composed of three main modules: feature extraction, feature fusion, and feature reconstruction. Specifically, the feature extraction module incorporates SPP (Spatial Pyramid Pooling) to effectively handle images of various scales. Experimental results demonstrate that the proposed model not only effectively fuses a single All-in-Focus image from images with multi focus images but also offers more efficient and robust focus fusion compared to existing methods.
For the disadvantages of multi-scale geometric analysis methods such as loss of definition and complex selection of rules in image fusion, an improved multi-focus image fusion method is proposed. First, the initial fused image is quickly obtained based on the lifting stationary wavelet transform, and a simple normalized cut is performed on the initial fused image to obtain different segmented regions. Then, the original image is subjected to NSCT transformation and the absolute value of the high frequency component coefficient in each segmented region is calculated. At last, the region with the largest absolute value is selected as the postfusion region, and the fused multi-focus image is obtained by traversing each segment region. Numerical experiments show that the proposed algorithm can not only simplify the selection of fusion rules, but also overcome loss of definition and has validity.
KSII Transactions on Internet and Information Systems (TIIS)
/
v.12
no.5
/
pp.2253-2272
/
2018
We propose a deep learning method for multi-focus image fusion. Unlike most existing pixel-level fusion methods, either in spatial domain or in transform domain, our method directly learns an end-to-end fully convolutional two-stream network. The framework maps a pair of different focus images to a clean version, with a chain of convolutional layers, fusion layer and deconvolutional layers. Our deep fusion model has advantages of efficiency and robustness, yet demonstrates state-of-art fusion quality. We explore different parameter settings to achieve trade-offs between performance and speed. Moreover, the experiment results on our training dataset show that our network can achieve good performance with subjective visual perception and objective assessment metrics.
KSII Transactions on Internet and Information Systems (TIIS)
/
v.17
no.4
/
pp.1234-1257
/
2023
In this paper, we propose a framework for multi-focus image fusion called PATN. In our approach, by aggregating deep features extracted based on the U-type Transformer mechanism and shallow features extracted using the PSA module, we make PATN feed both long-range image texture information and focus on local detail information of the image. Meanwhile, the edge-preserving information value of the fused image is enhanced using a dense residual block containing the Sobel gradient operator, and three loss functions are introduced to retain more source image texture information. PATN is compared with 17 more advanced MFIF methods on three datasets to verify the effectiveness and robustness of PATN.
KSII Transactions on Internet and Information Systems (TIIS)
/
v.7
no.7
/
pp.1671-1689
/
2013
The key issue of block-based multi-focus image fusion is to determine the size of the sub-block because different sizes of the sub-block will lead to different fusion effects. To solve this problem, this paper presents a novel genetic algorithm (GA) based multi-focus image fusion method, in which the block size can be automatically found. In our method, the Sum-modified-Laplacian (SML) is selected as an evaluation criterion to measure the clarity of the image sub-block, and the edge information retention is employed to calculate the fitness of each individual. Then, through the selection, crossover and mutation procedures of the GA, we can obtain the optimal solution for the sub-block, which is finally used to fuse the images. Experimental results show that the proposed method outperforms the traditional methods, including the average, gradient pyramid, discrete wavelet transform (DWT), shift invariant DWT (SIDWT) and two existing GA-based methods in terms of both the visual subjective evaluation and the objective evaluation.
The Journal of the Institute of Internet, Broadcasting and Communication
/
v.9
no.1
/
pp.75-87
/
2009
We propose in this paper a novel approach to image fusion in which the fusion rule is guided by optimizing an image clarity function. A Genetic Algorithm is used to stochastically select, comparative to the clarity function, the optimum block from among the source images. A novel nested Genetic Algorithm with gifted individuals found through bombardment of genes by the mutation operator is designed and implemented. Convergence of the algorithm is analytically and empirically examined and statistically compared (MANOVA) with the canonical GA using 3 test functions commonly used in the GA literature. The resulting GA is invariant to parameters and population size, and a minimal size of 20 individuals is found to be sufficient in the tests. In the fusion application, each individual in the population is a finite sequence of discrete values that represent input blocks. Performance of the proposed technique applied to image fusion experiments, is characterized in terms of Mutual Information (MI) as the output quality measure. The method is tested with C=2 input images. The results of the proposed scheme indicate a practical and attractive alternative to current multi-focus image fusion techniques.
The Journal of the Institute of Internet, Broadcasting and Communication
/
v.9
no.4
/
pp.59-68
/
2009
This paper addresses a hybrid multi-focus image fusion scheme using the recent curvelet transform constructions. Hybridization is obtained by combining the MS fusion rule with a novel "copy" method. The proposed scheme use MS rule to fuse the m most significant terms in spectrum of an image at each decomposition level. The scheme is dubbed in this work as m-term fusion in adherence to its use of the MSC (most significant coefficients) in the transform set at any given scale, orientation, and translation. We applied the edge-sensitive objective quality measure proposed by Xydeas and Petrovic to evaluate the method. Experimental results show that the proposed scheme is a potential alternative to the redundant, shift-invariant Dual-Tree Complex Wavelet transforms. In particular, it was confirmed that a 50% m-term fusion produces outputs with no visible quality degradation.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.