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Abstract 
 

We propose a deep learning method for multi-focus image fusion. Unlike most existing 
pixel-level fusion methods, either in spatial domain or in transform domain, our method 
directly learns an end-to-end fully convolutional two-stream network. The framework maps a 
pair of different focus images to a clean version, with a chain of convolutional layers, fusion 
layer and deconvolutional layers. Our deep fusion model has advantages of efficiency and 
robustness, yet demonstrates state-of-art fusion quality. We explore different parameter 
settings to achieve trade-offs between performance and speed. Moreover, the experiment 
results on our training dataset show that our network can achieve good performance with 
subjective visual perception and objective assessment metrics. 
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1. Introduction 

Multi-focus image fusion is an important branch of multi-sensor image fusion. It is mainly 
employed in fusing substantial information from multiple images of a same scene to generate a 
clear composite image. Multi-focus image fusion can overcome the diversities and limitations 
of single sensor in spatial resolution, geometry, and spectrum, thus enhance the reliability of 
image processing tasks, such as feature extraction, edge detection, object recognition and 
image segmentation. Currently, multi-focus image fusion technology has a wide range of 
applications in transportation, medical imaging, military operations and machine vision [1]. In 
each application, the key task of image fusion is to find the accurate information from the 
source images. That is, the fused image containing all relevant objects in focus can be obtained 
by composing the clear regions or pixels. However, it is difficult to determine which regions or 
pixels are located in focus [2]. To solve this problem, many researchers have proposed 
information theory for performing fusion. 

Generally, pixel, feature and decision levels are three levels of image fusion process [3-4]. 
Pixel-level fusion deals with pixels obtained from source images directly, which is the lowest 
level of image fusion and mainly concentrates on visual enhancement. It can preserve the 
original information in the scene more easily. Advantages of pixel level fusion are low 
complexity and high accuracy [5-6]. Feature-level fusion performs on features extracted from 
source images for analysis and processing, which can be support for decision-level fusion. In 
feature-level, features of images include size, edges, corners and textures [7-8]. Feature-level 
fusion does not require source images registration strictly. Moreover, only the image feature is 
processed, thus it is convenient for information compression and data transmission. 
Decision-level fusion is the highest level of image fusion, aiming to make the best decision 
with credibility criteria. Decision fusion can be defined as the process of fusing information 
from several individual data sources after each data source is preprocessed, extracted and 
classified [9]. In summary, pixel-level image fusion can preserve more detailed information 
than feature and decision level [10].  

Pixel-level image fusion is categorized in two domains: spatial domain and frequency 
domain [11]. Spatial domain processes regions or pixels to combine relevant information 
directly with focused regions properties, such as focused pixels detection [46], point spread 
functions (PSFs) [38] and guided filtering (GF) [12]. In frequency domain, source images are 
transformed in frequency domain, then frequency coefficients are combined and conducted 
inverse transform to get clear images by fusion rules, such as non-subsampled contourlet 
transform (NSCT) [47], non-subsampled shearlet transform(NSST) [48] and discrete cosine 
transform (DCT) [49]. 

In Recent years, image fusion approaches are proposed using machine learning (ML) 
algorithms for the classification of focused image regions. Artificial neural network (ANN) 
and support vector machine (SVM) based fusion methods are explored with visibility, spatial 
frequency, and edge features [13-14]. Besides, another efficient variant of ANN, probabilistic 
neural network (PNN), is developed for image fusion [15]. C. M. Sheela Rani and V 
Vijayakumar et al.proposed an efficient block based feature level contourlet transform with 
neural network (BFCN) model for image fusion [16]. All the above mentioned approaches are 
focused on feature-level or decision-level fusion. Among the state-of-the-art methods, 
Convolutional Neural Network (CNN) has achieved record-breaking performance in 
computer vision and image processing tasks, ranging from detection, recognition, tracking to 
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semantic segmentation, denoising and super-resolution. Jain and Seung proposed a novel 
CNN to denoise original images [17]. C Dong and CC Loy et al. explored a deep convolutional 
network for image super-resolution [18]. Their framework is the same as Fully Convolutional 
Neural Network (FCN) for image semantic segmentation [19]. Their networks accept an 
image as the input and produces an entire image as the output through hidden layers of 
convolution and deconvolution. The weights are learned by minimizing the difference 
between the whole-image inputs and corresponding whole-image groundtruths. Some novel 
image fusion methods based on CNN have been proposed. In [20], an algorithm is presented 
for both image fusion and super-resolution. The resolution is enhanced with CNN, and fusion 
rule is also images transformed in frequency domain. In [21], CNN is applied to output a score 
map and final fused image is obtained with pixel-wise weighted-average strategy. However, 
above two models are not deep end-to-end networks. 

In this work, we investigate a fully convolutional two-stream network framework for 
pixel-level image fusion. The network consists of a chain of convolutional layers, fusion layer 
and deconvolutional layers. The inputs of our framework are two source images having 
different regions in focus, and output is a fused image. The convolution layers perform the 
feature extraction, which encode the primary contents of the pair of input images. The fusion 
layer combines the two stream networks with feature maps fusion. Then the deconvolutional 
layers as decoders process fused feature maps to recover the image content details.  

Overall, the contributions of our study are mainly in three aspects: 
1) The proposed framework is the first attempt to learn convolutional, fusion and 

deconvolutional mappings from different focus images to the clean version in an end-to-end 
network, instead of traditional image fusion schemes.  

2) We establish a many-to-one mapping between input source images and output one. 
This mapping can provide guidance for design of the multi-stream networks structure. 

3) We demonstrate that deep learning is useful for multi-focus image fusion, and can 
achieve good quality and speed.  
The paper is organized as follows. We present the idea and architecture of performing image 
fusion network in section 2. Experimental results and analysis are provided in Section 3, 
followed by the conclusions in Section 4. 

2. Fully convolutional two-stream network for image fusion 

The proposed framework is composed of three parts：two-stream network of convolutional 
layers, fusion layer, and deconvolutional layers. Especially, two stream convolutional 
networks are combined through the convolutional fusion layer, as shown in Fig. 1. 

2.1 Architecture 
The framework of fully convolutional two-stream network is an encoder-decoder network 
essentially. Since our network has no full connection layer of standard CNN, the size of input 
images can be arbitrary[19]. The data in each layer has a three-dimensional array of size 
h×w×d, where h and w are spatial dimensions, and d is the channel dimension. The two inputs 
based on image registration have the same size, with pixel size h×w, and d color channels.  

The two-stream convolution network corresponds to feature extractor that transforms the 
input images to multidimensional feature representation, whereas the deconvolution network 
is a generator that restores an image from the feature maps fused from the fusion layer. The 
final output of the network is a clean image in the same size with input multi-focus images. 
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Fig. 1. The overview scheme of fully convolutional two-stream network. ‘Cov’ is the short form for 

‘convolution’, ‘Cov fusion ’ for ‘convolutional fusion’ and ‘Decov ’ for ‘deconvolution’ . 

A main difference between our framework and FCN[19] is that our network includes 
convolutional, fusion and deconvolutional layers, but no pooling. The reason is that our aim is 
to fuse pixel-level images while preserving image details instead of learning image features 
for recognition or detection. Different from high-level applications, pooling typically 
eliminates the abundant image details and can degrades fusion performance. 

2.2 Fusion scheme 
In this section, we illustrate a scheme for fusing two stream feature maps. To put in the channel 
responses at the same pixel position correspondingly, there are two issues to be analyzed, 
spatial correspondence and channel correspondence. Spatial correspondence is easy to realize 
by stacking layers from one network on the other when two networks have same spatial 
resolution at the layers to be fused. By comparison, channel correspondence is relatively 
difficult, which deals with the correspondence of channel (or channels) in one network with 
channel (or channels) in the other network. 

Concretely, we explore a way to fuse layers between two convolutional networks, and 
discuss the consequences of correspondence for each network. 

f : xa , xb , y refers to the fusion function, which can fuse two feature maps x ,x × ×∈a b H W D   
and produce an output map

' ' '

y × ×∈yH W D , in which H, W and D denote height, width and 
channel numbers of respective feature maps. Applied at different points in the network, f aims 
to implement multiple layer fusion assuming '=H H and '=W W .  

Convolutional fusion. Firstly, we define a concatenation function. cat caty (x ,x )= a bf stacks 
two feature maps at the same spatial locations i, j across channel d: 

cat
, ,2 , ,= a

i j d i j dy x   cat
, ,2 1 , , ,b

i j d i j dy x− =                                (1) 
where 2y × ×∈yH W D [22]. 

Then, Convolutional fusion function is as follows. conv convy (x ,x )= a bf  stacks two feature 
maps at the same spatial locations i, j across feature channel d as shown in Eq.(1) and 
subsequently convolves the stacked data with a bank of fusion filters 1 1 2f × × ×∈ D  and biases 
b∈D [22]. 

conv caty =y *f + b                                                               (2) 
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Where D denotes the number of output channels, and the dimension of fusion filter 
is1 1 2× × . In this function, f is conducted to reduce the dimensionality from 2D to D and can 
be used to model weighted combinations of two feature maps xa , xb  at the same spatial 
(pixel) location. The fusion feature map is obtained with weighted average of pixel values. 
When performed as a trainable filter, f learns correspondences of two feature maps that 
minimize the loss function in the network. The convolutional layers extracts feature patches 
with filers of 3 3× or 5 5× , and each patch is represented as a high-dimensional vector. The 
convolutional fusion layer not only conducts to fuse two feature maps, but also nonlinearly 
maps each high-dimensional vector onto another high-dimensional vector. Each mapped 
vector can represent a high-resolution patch by learning. The non-linear mapping is on 3 3× or 
5 5× patch of the feature map, therefore, we set fusion filter size only1 1× in spatial domain. 
We apply Rectified Linear Unit (ReLU, max(0,x)) [23] on the filter responses [18]. 
 

   
(a)                           (b) 

Fig. 2 Illustration of output feature maps convolutional and convolutional fusion layers.  
(a) multi-focus source images ;  

(b) feature maps of the second convolutional layers;  
(c) feature map of convolutional fusion layer. 

 
Fig. 2 shows correspondence feature maps of two source images and obtained convolutional 

fusion map. 

2.3 Deconvlution decoder 
The convolution performs as an encoder that maps multiple input activations to a single output 
activation within a filter window, whereas deconvolution corresponds to a decoder that 
associates a single input activation with multiple outputs, as show in Fig. 3. Such two 
operations are completely symmetrical, we need only reverses the forward and backward 
passes of standard convolutional neural network. Thus, transposed convolution can be 
performed for end-to-end learning by backpropagation from the pixel-wise loss. 

Transposed convolution conducts a transformation going in the opposite direction of a 
normal convolution, from image that has the shape of the output of some convolution to image 
that has the shape of its input while maintaining a connectivity pattern that is compatible with 
said convolution. Our network uses such transformation as the decoding layer of a 
convolutional encoder to project feature maps to a higher-dimensional space [24]. 

(c) 
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(a) 

 
(b) 

Fig. 3. Illustration of convolution and deconvolution operations. (a) Convolution; (b) Deconvolution. 

In proposed model, the deconvolutional network is a key component for image fusion. 
Contrary to the deconvolution in performed on pixel-wise class probability for object 
segmentation, our model generates pixel-wise image detail restoration using deep 
deconvolution network, where a clean image is obtained by successive operations of 
deconvolution. 

For our network, we use padding to make the input sources and corresponding output the 
same size, and the deconvolution filters are not fixed, but can be learned. 

2.4 Network training 
There are three types of layers in our network: convolution, fusion and deconvolution. We 
implement our framework by Caffe [25]. Each layer is followed by a Rectified Linear Unit 
(ReLU) activation function [23]. Let x be the input, the convolutional, fusion and 
deconvolutional layers are expressed as: 

                                             (x) = max(0, x )∗ +k kF w b                                                      (3) 

where kw and kb refer to the filters and biases, and ∗ denotes convolution, fusion or 
deconvolution operation. 

Learning the mappings from pairs of blurred images to clean ones needs to update the 
parameters ( , )Θ k kw b represented by the convolutional, fusion and deconvolutional filters with 
standard back propagation. Specifically, {(x ,x ), y }a b

i i i refers to a collection of N training 
sample pairs, where (x ,x )a b

i i  denotes a pair of multi-focus images and yi  denotes the clean 
image as the groundtruth, and the collection is contained in the training dataset. We minimize 
the loss function Mean Squared Error (MSE), as followed. 

2

1 2

1( ) (x ,x ; ) y
=

Θ = Θ −∑
N

a b
i i i

i
L F

N
                                                   (4) 

The choice of the cost function is appropriate since Peak Signal-to-Noise Ratio (PSNR) is 
the main evaluation method of image restoration tasks and stands in monotonic relation with 
MSE. During the training stage, we update the weights and biases with standard back 
propagation [26-27]. 

Currently, the optimization of the loss function is dominated by the stochastic gradient 
descent (SGD) method [28]. Basically, at the t + 1th iteration they update the parameters 

1+Θt with the previous parameter update Λt and negative gradient ( )∇ ΘL , 
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t 1 t ( )+Λ = Λ − ∇ Θta b Λ      (5) 

 t+1 +1Θ = Θ +Λt t  (6) 

where a, b are the momentum and learning rate, resp. One weakness of SGD is that the 
improvements gained from the optimization decrease rapidly with growing iteration steps. In 
such case, SGD may not be able to recover accurate details from blurred images pairs. This is 
the main reason why we adopt Adam estimation as our optimization method. The Adam 
method is stated as follows [29], 

1 1 1(1 ) ( )−Λ = Λ + − ∇ Θt ta a Λ                   (7) 

 2
2 1 2(1 ) ( )−= + − ∇ Θt t tK a K a L    (8) 

where 1a , 2a are exponential decay rates for the moment estimates and 1+Θt is updated based on 

tK ,Λt , 

 2
1

1

1 ( )
1 ( ) ε+

− Λ
Θ = Θ −

− +

t
t

t t t
t

a
b

a K
 (9) 

where b is the learning rate and ε is used to avoid explosion. We follow the recommended 
values in [29], where coefficient b is set to 0.001, 1a set to 0.9, 2a set to 0.999 and ε set to -810 . 
At the beginning of the iterations, the cost of ( )ΘL converges considerably faster than SGD. 
Moreover, Eq. (9) shows that the magnitudes of parameter updates are independent of the 
rescaling of the gradient, therefore it provides a relatively fast convergence speed even after a 
large amount of iterations. 

3. Experiment and Results 
Firstly, we introduce our training dataset. Next, we examine and analyze the network on 
different parameters, including filter number, filter size, training patch size and network depth. 
At last, we compare our model with state-of-the-arts both quantitatively and qualitatively. 

3.1 Training Dataset 
Generally, deep learning benefits from data training as shown in the literature. In this work, we 
build a training dataset, choosing 1000 high-quality images from ILSVRC 2013 ImageNet 
detection partition [44] and Ava dataset [45]. For each image, the blurred version with 
different blurring level are set by Gaussian filtering [21-30]. Specifically, Gaussian filter set a 
standard deviation from 2 to 10 randomly. As shown in Fig. 4, images in first two rows with 
different blurred regions are processed from the original images with Gaussian filter. And, for 
each blurred image, patches of size are object region randomly sampled (human, horse, ship 
etc.). In this study, we totally obtain 1000 groups of images (1000 pair of blurred images and 
1000 clean versions) from the open dataset, as show in Fig. 4. 
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Fig. 4. Examples of training dataset. The top and the middle row is a pair of blurred images, The 
bottom row is the clean version. 

3.2 Network Analysis 
We modify some network parameters to explore the best trade-off between performance and 
speed, and find the relations between performance and parameters. In experiments, we convert 
training images into gray ones and evaluate the performance with Peak Signal-to-Noise Ratio 
(PSNR). We conduct the experiments on four aspects: (a) filter number, (b) filter size, (c) 
number of layers and (d) training patch size, to analyze the effects of different parameters. 

We set filter number 32, 64 and 128 to be tested. Generally, the performance would boost if 
we extend the network width, i.e. adding more filers in a layer, at the cost of running time. It 
demonstrates that better performance could be achieved by extending the width, as show in 
Fig. 5(a). However, if a fast image fusion speed is demanded, a narrow width network is 
popular and still can achieve good performance. 

For experiments on filter size, we set filter size 3×3, 5×5 and 9×9 to examine the network 
sensitivity to different filter sizes. Experiments show the PSNR values as in Fig. 5(b). This 
indicates that a properly larger filter size could capture richer structural information, which 
lead to better performance thereof. However, the running speed also decreases with the 
increase of filter size. The reason may be that for pixel-level image fusion, especially in 
deconvolutional layers for image restoration, larger filter need more information to recover 
larger region details. We can draw the conclusion that smaller filter size is beneficial for 
network convergence in such complex mappings, instead, larger filter make network more 
difficult to converge. From this perspective, we should balance between the speed and 
performance. 

For number of layers, we gain that CNN could achieve good performance by increasing the 
depth of network moderately [31]. CNN from each layer have different nature of the features 
in the network [32]. Layer 2 shows the low-level features of corners and other edge/color 
conjunctions. Layer 3 shows complex invariances, extracting similar textures (e.g. mesh 
pattern). Layer 4 shows significant variation, capturing more class-specific (e.g. human face, 
horse legs). Layer 5 shows global features of objects with significant pose variation, e.g. clock, 
tree and dog. That is, CNN has larger receptive fields at higher-level layers. They can capture 
larger regions with lower spatial accuracy, which is beneficial for high-level tasks, e.g. image 
detection, classification and tracing. CNN at lower layers tends to localize features at smaller 
scale more precisely. As our task is feature maps fusion and restoration. In order to restore 
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high quality image, we fix the framework with 2 convolutional layers, 1 fusion layer and 2 
deconvolutional layers (2-1-2). We conduct two experiments, i.e. 2-1-2 and 3-1-3, as show in 
Fig. 5(c). The initialization scheme and learning rate are all the same. We can observe that the 
network with more layers do not lead to better performance. The reason may be that image 
more details could be lost or corrupted by adding more layers. Meanwhile, the experiments 
indicate that deeper model make convergence more difficult. The same phenomenon is also 
described in [18-33], where increase of layers leads to speed sacrifice and performance 
degradation for image restoration.  

For the training patch size, we set the filter number to be 64, filter size as 3×3. Then we test 
different training patch sizes of 25×25, 50×50, 100×100, as shown in Fig. 5(d). Better 
performance is achieved with larger training patch size. Since the network performs 
pixel-level image fusion, large size patch contains more low feature information, and larger 
size of training patch contains more pixels that better capture the latent distributions to be 
learned. 

 
(a) 

0 1 2 3 4 5 6 7 8 9 10
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27

28

29
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—filter size=3×3
—filter size=5×5
—filter size=9×9
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(d
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Iteration(×105)

 
(b) 

 
(c) 

 
(d) 

Fig. 5. The performance on the validation set during training with different parameters: (a) The test of 
filter number; (b) The test of filter size; (c) The test of layer number; (d) The test of patch size. 

3.3 Quantitative and Qualitative Evaluation 
In this section, we verify the effectiveness of the proposed deep learning fusion method, and 
compare the results of our method with state-of-art methods quantitatively and qualitatively. 

3.3.1 Experimental settings 
In order to achieve good performance-speed trade-off, we train the network with patch size 
50 50× , convolutional and deconvolutional filter size 5 5× , stride size 5 without overlapping, 
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and set filter number 64, layer number 2-1-2, base learning rate of -510 . Training data are color 
and gray scale images with four channels. The network was trained on a single NVIDIA Tesla 
K40 GPU. 

The proposed fusion scheme is compared with nine multi-focus image fusion methods, 
DWT-based method (DWT) [34], Laplacian Pyramid method (LP) [35] , Steerable Pyramid 
method (SP) [36], Ratio Pyramid method (RP) [37], Point Spread Functions method(PSFs) 
[38], Contrast Pyramid method (CP) [39], Guided filtering method(GF) [12], SRCNN method 
[20] and CNN method [21]. 

Objective evaluation is significant in pixel-level image fusion as the performance of a 
fusion sheme mainly assessed by the quantitative scores on multiple metrics. In this work, we 
select four metrics: Information Entropy (IE) [43], Mutual Information (MI) [40], Xydeas [41] 
and Piella [42]. Information entropy is generally applied to measure the amount of information. 
The more information entropy there is the better fusion result is obtained. Mutual information 
represents how much information obtained from the fusion of input images used to assess the 
performance of different image fusion algorithms. In addition, Xydeas and Piella metrics are 
applied to the assessment of the salient information transferred from the input images to the 
fused images. Piella metric takes the image correlation coefficient, mean luminance, contrast, 
and edge information into account in a comprehensive manner. The dynamic ranges of three 
Piella indexes Q, wQ and eQ  are [0,1]. The larger the values are, the better the fusion 
performance is. We evaluate three traditional multi-focus image pairs “Clock”, “Pepsi” and 
“Camera”. 

3.3.2 Fusion on multi-focus “Clock” images 
In this section, a pair of 512 ×512 “Clock” multi-focus images with different focused regions 
are utilized to perform the proposed scheme and the comparative methods. In Fig. 6, (a) and 
(b) are source images. As the right clock is focused in ClockA, the left one is fuzzy. In 
comparison, the left clock is focused in ClockB and the right one is fuzzy. This pair of 
multi-focus images consists of both rich cartoon components and abundant texture 
components comparatively. In this section, we sketch some experiments to verify the 
performance of the proposed fusion approach. 

Results using different fusion methods are shown in Fig. 6. The fused images are obtained 
by combining two multi-focus images by different methods. In Fig. 5 (c)–(l) denote the result 
acquired by DWT-based method (DWT), Laplacian Pyramid method (LP), Steerable Pyramid 
method (SP), Ratio Pyramid method (RP), Point Spread Functions method(PSFs), Contrast 
Pyramid method (CP) Guided filtering method(GF), SRCNN method, CNN method and the 
proposed method, respectively. The fused images in Fig. 5 (c)–(f) are obtained by integrating 
the cartoon and texture components. Although the fusion methods get high-quality fused 
images, the luminance distortion is obvious compared with the source images meanwhile, 
experimental results also demonstrate that some noise information has been introduced into 
the fused images obtained by DWT, LP and RP. In comparison, the fused images merged by 
PSFs, CP, GF, SRCNN,CNN and the proposed method contain much more detailed 
information. On the other hand, it is difficult to distinguish the diversity among those fused 
images acquired by PSFs, CP, CNN and the proposed method for human visual system. Thus, 
the objective indices are utilized to evaluate the fused images. The results of the assessment 
criteria are shown in Table 1. 
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(a)                               (b)                                    (c)                                  (d) 

 
                       (e)                                 (f)                                    (g)                                  (h) 

 
                       (i)                                  (j)                                   (k)                                  (l) 

Fig. 6. The fused images obtained by different fusion methods for multi-focus “Clock” images. (a) and 
(b) Multi-focus source images：ClockA and ClockB ; (c) DWT-based method; (d) Laplacian Pyramid 
method; (e) Steerable Pyramid method; (f) Ratio Pyramid method; (g) Point Spread Functions method; 

(h) Contrast Pyramid method; (i) GF method; (j) SRCNN method; (k) CNN method; (l)Proposed 
method. 

Table 1. The quantity assessment of fusion methods for multi-focus “Clock” images. 

     Metrics 
Methods  

IE[43] MI[40] Xydeas[41] 
Piella[42] 

Q Qw Qe 
DWT 5.5755 0.9073 0.6891 0.7307 0.8380 0.7318 
LP 5.5174 1.0266 0.7560 0.7609 0.8539 0.7742 
SP 5.7160 1.0568 0.4340 0.6874 0.7986 0.4822 
RP 5.6579 1.0875 0.5315 0.7492 0.8163 0.6057 
PSFs 5.5968 1.0714 0.7580 0.7970 0.8541 0.7734 
CP 5.6047 1.0630 0.7522 0.7704 0.8562 0.7437 
GF 5.7560 1.0789 0.7490 0.7793 0.8574 0.7792 
SRCNN 5.7641 1.0984 0.7581 0.7887 0.8590 0.7940 
CNN 5.8764 1.2059 0.7654 0.8045 0.8602 0.8177 
Ours 5.8471 1.1574 0.7691 0.8261 0.8754 0.8370 
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As shown in Table 1, the proposed fusion approach outperforms other methods in terms of 
the evaluation criteria including Xydeas, and Piella. These quantitative assessments indicate 
that the fused image obtained by the proposed method contains more detail information and 
clarity. Although the value of quantitative metric IE and MI is smaller, the distinction is 
relatively tiny. In conclusion, the proposed fusion approach is superior to other methods 
through quantitative evaluation. 

3.3.3 Fusion on multi-focus “Pepsi” images 
In this work, some fusion experiments on a set of multi-focus “Pepsi” images with size of 512 
×512 pixels are sketched to illustrate the performance of the proposed fusion approach. 
PepsiA focuses on the right side of the device with white panel, some words and strides in the 
cover, the device clear, part Pepsi fuzzy. While PepsiB focuses on the left side of the part 
Pepsi with cylinder surface, and some words in the cover, part Pepsi clear, the device fuzzy. 
As mentioned above, this group of source images is abundant in cartoon components and 
texture components. To show the effectiveness of the different fusion methods, some 
experiments are implemented and demonstrate the merits of our method. The experimental 
results are shown in Table 2.  

 
(a)                                (b)                                 (c)                                   (d) 

 
                        (e)                                 (f)                                  (g)                                  (h) 

 
                          (i)                                 (j)                                 (k)                                  (l) 

 
Fig. 7. The fused images obtained by different fusion methods for multi-focus “Pepsi” images.  

(a) and (b) Multi-focus source images: PepsiA and PepsiB; (c) DWT-based method;  
(d) Laplacian Pyramid method; (e) Steerable Pyramid method; (f) Ratio Pyramid method;  

(g) Point Spread Functions method; (h) Contrast Pyramid method; (i) GF method; 
 (j) SRCNN method; (k) CNN method; (l)Proposed method. 

http://cn.bing.com/dict/search?q=cylinder&FORM=BDVSP6&mkt=zh-cn
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The fused images obtained by the proposed fusion approach and the well-known 
methods are shown in Fig. 6. The source images can provide dissimilar information as 
shown in Fig. 6 (a) and (b). From the fused results, visual observation illustrates that the 
fused images are satisfactory with contrast as shown in Fig. 7 (d), (g), (h), (k) and (l), 
which are obtained by Laplacian Pyramid method, Steerable Pyramid method, Contrast 
Pyramid method CNN and the proposed method, respectively. Obviously, the fusion 
images by DWT-based method lose edge information on Pepsi, and the fused image by 
Ratio Pyramid method contains a fraction of noise on device. 

As shown in Table 2, according to the evaluation metrics including IE and Piella, the 
proposed fusion method achieves better results when compared with other methods. Results 
of these assessment metrics demonstrate that the proposed fusion approach can capture much 
more information from source images. In particular, although the values of Xydeas are not the 
largest, the distinction is little. Therefore, the proposed fusion approach outperforms others 
according to visual intuition and quantitative evaluation. 

Table 2. The quantity assessment of fusion methods for multi-focus “ Pepsi” images. 

     Metrics 
Methods  

IE MI Xydeas 
Piella 

Q Qw Qe 
DWT 5.7644 0.9103 0.6703 0.7463 0.6887 0.7686 
LP 5.7715 0.9814 0.7344 0.8554 0.8624 0.8340 
SP 5.8198 1.0757 0.7655 0.8492 0.8564 0.8108 
RP 5.7155 1.0501 0.5560 0.7410 0.7890 0.6288 
PSFs 5.7811 1.0175 0.7888 0.8638 0.8630 0.8402 
CP 5.8462 1.0751 0.8262 0.8640 0.8701 0.8411 
GF 5.8667 1.0655 0.7810 0.8428 0.8561 0.8156 
SRCNN 5.8813 1.1450 0.7899 0.8506 0.8423 0.8278 
CNN 5.8952 1.1580 0.7938 0.8656 0.8599 0.8388 
Ours 5.9275 1.2834 0.8066 0.8795 0.8744 0.8472 

3.3.4 Fusion on multi-focus “Camera” images 
In this section, the corresponding experiments on a pair of multi-focus “Camera” images with 
size 256 ×256, are implemented among the proposed scheme and other methods. The source 
images are shown in Fig. 8(a) and (b). In CameraA, the trunk, head and right arm of the 
photographer are fuzzy, other contents of image are clear, while CameraB is the complete 
opposite to CameraA. In the experiments, we evaluate the performance of the proposed 
approach. 

As shown in Fig. 8, from the perspective of human visual perception mechanism, Ratio 
Pyramid method has luminance distortion to some extent compared with the source images 
obviously, and there are some noise in Fig. 8 (e), (g), (i) and (h), which is obtained by 
Steerable Pyramid method, Point Spread Functions method, Guided filtering method and 
Contrast Pyramid method. Fortunately, the fused images contain much more detail 
information including edges and contours in Fig. 8(c), (d), (j), (k) and (l), which are obtained 
by DWT-based method, Laplacian Pyramid method, SRCNN, CNN and the proposed method, 
respectively. There are some halo on cameraman’ shoulder as show in Fig. 8 (j), (k) and (l). 
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The main reason of our method is that the halo is retained in feature map of convolutional 
fusion layer (see Fig. 2(c)). When operating deconvolution, the halo has been restored. 

 
(a)                                (b)                                 (c)                                 (d) 

 
                        (e)                             (f)                               (g)                             (h) 

 
                        (i)                                 (j)                                   (k)                                 (l) 

Fig. 8. The fused images obtained by different fusion methods for multi-focus “Camera” images. 
(a) and (b) Multi-focus source images: CameraA and CameraB; (c) DWT-based method; (d) 

Laplacian Pyramid method; (e) Steerable Pyramid method; (f) Ratio Pyramid method; (g) Point 
Spread Functions method; (h) Contrast Pyramid method; (i) GF method; (j) SRCNN method; (k) 

CNN method; (l)Proposed method. 

Table 3. The quantity assessment of fusion methods for multi-focus “ Camera” images. 

     Metrics 
Methods  

IE MI Xydeas 
Piella 

Q Qw Qe 
DWT 5.3690 0.9149 0.6597 0.8004 0.8905 0.7807 
LP 5.3881 0.8963 0.6471 0.8139 0.8964 0.7912 
SP 5.4190 0.7502 0.6699 0.7972 0.8426 0.7268 
RP 5.4427 0.7052 0.6716 0.7279 0.8178 0.7090 
PSFs 5.3964 0.8974 0.6532 0.8154 0.8984 0.7935 
CP 5.3590 0.9548 0.6577 0.8137 0.8854 0.7692 
GF 5.3080 0.7693 0.6450 0.7675 0.8126 0.7190 
SRCNN 5.3281 0.8021 0.6478 0.7720 0.8478 0.7588 
CNN 5.3445 1.0890 0.6502 0.7821 0.8855 0.7750 
Ours 5.5714 1.2572 0.6790 0.8207 0.8971 0.7988 
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As shown in Table 3, all quantitative metrics demonstrate that the proposed fusion 
approach can have much better performance from multi-focus source images. Since the test 
images “Camera” are similar with the training groups of images, whose object regions are 
blurred with Gaussian filters. Our network obtained much priori knowledge fitting for this sort 
of source images fusion. In brief, the results of subjective and objective evaluation illustrate 
that our fusion method performs better than other methods. 

3.3.5 Fusion on multi-focus color images 
In this section, fusion experiments on a pair of multi-focus color images blurred with different 
level by Gaussian filtering artificially are implemented to verify the property of the proposed 
the fusion approach. Observing multi-focus source color images with size 640 ×396 in 
Fig.9(a) and (b), the calf is fuzzy in Color_imageA, other contents of image are clear, while 
Color_imageB is the complete opposite to Color_imageA. In this work, some experiments 
demonstrate the performance of fusion and high fused image quality. 

 
(a)                                                   (b)                                                  (c) 

 
(d)                                                   (e)                                                  (f) 

 
(g)                                                   (h)                                                  (i) 

 
(j)                                                   (k)                                                  (l) 

 
Fig. 9. The fused images obtained by different fusion methods for multi-focus color images.  

(a) and (b) Multi-focus source images: Color_imageA and Color_imageB; (c) DWT-based method;  
(d) Laplacian Pyramid method; (e) Steerable Pyramid method; (f) Ratio Pyramid method;  

(g) Point Spread Functions method; (h) Contrast Pyramid method; (i) GF method;  
(j) SRCNN method; (k) CNN method; (l)Proposed method. 
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As shown in Fig. 9, It can be seen that DWT-based method and Steerable Pyramid method 
don’t perform very well in the fused image. The fusion quality of the GF method and SRCNN 
method are much better in terms of this issue, but the region of the horse’s tail is still not well 
merged. The PSFs method, GF method and the proposed method all obtain fusion result in 
high quality. The difference between the three fused images is relatively small. But when 
carefully comparing the edge between horse and calf among all the fused images, we can see 
that the proposed method fuses more natural and smooth than the other methods. 

Table 4 lists the objective performance of different fusion methods using the four metrics. 
All quantitative metrics show that the proposed fusion method has much better performance 
from multi-focus color images than all the other methods. The objective performance 
surpasses the above test multi-focus “Camera” images.  

Table 4. The quantity assessment of fusion methods for multi-focus color images. 

     Metrics 
Methods  

IE MI Xydeas 
Piella 

Q Qw Qe 
DWT 5.1478 0.7315 0.6421 0.7654 0.8352 0.7607 
LP 5.4784 0.7924 0.6550 0.8032 0.8567 0.7856 
SP 5.2112 0.7358 0.6396 0.7641 0.8327 0.7288 
RP 5.4371 0.7104 0.6584 0.7354 0.8398 0.7430 
PSFs 5.4104 0.7742 0.6602 0.8108 0.8596 0.7935 
CP 5.3585 0.7648 0.6523 0.8170 0.8804 0.7642 
GF 5.3876 0.7720 0.6574 0.7570 0.8232 0.7274 
SRCNN 5.3274 0.7956 0.6595 0.7727 0.8528 0.7620 
CNN 5.3925 1.0074 0.6603 0.8127 0.8801 0.7950 
Ours 5.5921 1.2588 0.6819 0.8332 0.8994 0.8040 

5. Conclusion 
In this paper, we have presented a novel deep learning model for multi-focus images fusion. 

We formulate fully convolutional network into a fully convolutional two-stream fusion 
network. The proposed method is the first attempt to learn end-to-end combining two stream 
convolutional networks and restoration a clean image, with convolutional filters, fusion filters 
and deconvolutional filters. Compared with several spatial domain, transform domain and 
machine learning based methods, experimental results and our analysis demonstrate that our 
model achieves better performance than state-of-the-art methods on image fusion with 
subjective visual perception and objective assessment metrics. The paper advances a 
many-to-one mapping idea between input source images and output one. Next, we will try to 
design the multi-stream networks structure. We assume that the further performance can be 
improved by exploring different fusion and training strategies. 
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