• Title/Summary/Keyword: Multi-fault

Search Result 410, Processing Time 0.027 seconds

Performance assessment of buildings isolated with S-FBI system under near-fault earthquakes

  • Ozbulut, Osman E.;Silwal, Baikuntha
    • Smart Structures and Systems
    • /
    • v.17 no.5
    • /
    • pp.709-724
    • /
    • 2016
  • This study investigates the optimum design parameters of a superelastic friction base isolator (S-FBI) system through a multi-objective genetic algorithm to improve the performance of isolated buildings against near-fault earthquakes. The S-FBI system consists of a flat steel-PTFE sliding bearing and superelastic NiTi shape memory alloy (SMA) cables. Sliding bearing limits the transfer of shear across the isolation interface and provides damping from sliding friction. SMA cables provide restoring force capability to the isolation system together with additional damping characteristics. A three-story building is modeled with S-FBI isolation system. Multiple-objective numerical optimization that simultaneously minimizes isolation-level displacements and superstructure response is carried out with a genetic algorithm in order to optimize S-FBI system. Nonlinear time history analyses of the building with optimal S-FBI system are performed. A set of 20 near-fault ground motion records are used in numerical simulations. Results show that S-FBI system successfully control response of the buildings against near-fault earthquakes without sacrificing in isolation efficacy and producing large isolation-level deformations.

Partial Fault Detection of an Air-conditioning System by using a Moving Average Neural Network

  • Han, Do-Young;Lee, Han-Hong
    • International Journal of Air-Conditioning and Refrigeration
    • /
    • v.11 no.3
    • /
    • pp.125-131
    • /
    • 2003
  • The fault detection and diagnosis technology may be applied in order to decrease the energy consumption and the maintenance cost of the air-conditioning system. In this paper, two fault detection methods were considered. One is a generic neural network, and the other is an moving average neural network. In order to compare the performance of fault detection results from these methods, two different types of faults in an air-conditioning system were applied. These are the condenser 30% fouling and the evaporator fan 25% slowdown. Test results showed that the moving average neural network was more effective for the detection of partial faults in the air-conditioning system.

Practical Swarm Optimization based Fault-Tolerance Algorithm for the Internet of Things

  • Luo, Shiliang;Cheng, Lianglun;Ren, Bin
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.8 no.4
    • /
    • pp.1178-1191
    • /
    • 2014
  • The fault-tolerance routing problem is one of the most important issues in the application of the Internet of Things, and has been attracting growing research interests. In order to maintain the communication paths from source sensors to the macronodes, we present a hybrid routing scheme and model, in which alternate paths are created once the previous routing is broken. Then, we propose an improved efficient and intelligent fault-tolerance algorithm (IEIFTA) to provide the fast routing recovery and reconstruct the network topology for path failure in the Internet of Things. In the IEIFTA, mutation direction of the particle is determined by multi-swarm evolution equation, and its diversity is improved by the immune mechanism, which can improve the ability of global search and improve the converging rate of the algorithm. The simulation results indicate that the IEIFTA-based fault-tolerance algorithm outperforms the EARQ algorithm and the SPSOA algorithm due to its ability of fast routing recovery mechanism and prolonging the lifetime of the Internet of Things.

Fault Diagnosis and Neutral Point Voltage Control Under the Switch Fault in NPC 3-Level Voltage Source Inverter (NPC 3-레벨 인버터의 스위치 고장시 고장 진단과 중성점 불평형 전압 제어)

  • Kim Tae-Jin;Kang Dae-Wook;Hyun Dong-Seok;Son Ho-In
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.54 no.5
    • /
    • pp.231-237
    • /
    • 2005
  • Many conventional multi-level inverters have detected switching faults by using the over voltage and current. However, fault detection of the switching elements is very difficult because the voltage and current due to each switching fault decrease more than the normal operation. Moreover, the dc-link unbalancing voltage causes a serious problem in the safety and reliability of system when the 3-level inverter faults occur Therefore, this paper proposes the simple fault diagnose method and the neutral-point-voltage control method that can protect the 3-level inverter system from the unbalancing voltage of the do-link capacitors when the faults of switching elements occur in the 3-level inverter that is very efficient in ac motor drives of the high voltage and high power applications. Through experiment results, the validity of the proposed method is demonstrated.

Fault Detection of Synchronous Generator using Wavelet Transform (웨이브릿 변환에 의한 동기발전기의 고장검출)

  • Park, Chul-Won;Shin, Myong-Chul
    • Proceedings of the KIEE Conference
    • /
    • 2007.07a
    • /
    • pp.640-641
    • /
    • 2007
  • In this paper, the discrete wavelet transform (DWT) was applied a fault detection of a synchronous generator being superior to a transient state signal analysis and being easy to real time realization. The fault signals after executing a terminal fault modeling collect using a MATLAB package, and calculate the wavelet coefficients through the process of a multi-level decomposition (MLD). The proposed algorithm of a fault detection of a generator using Daubechies WT (wavelet transform) was executed with a C language for the commend line function and for the real time realization after analyzing MATLAB's graphical interface.

  • PDF

Neutral-Point Voltage Balancing Control Scheme for Fault-Tolerant Operation of 3-Level ANPC Inverter (3-레벨 ANPC 인버터의 고장 허용 운전 시 중성점 전압 균형 제어 기법)

  • Lee, Jae-Woon;Kim, Ji-Won;Park, Byoung-Gun;Nho, Eui-Cheol
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.24 no.2
    • /
    • pp.120-126
    • /
    • 2019
  • This study proposes a neutral voltage balance control scheme for stable fault-tolerant operation of an active neutral point clamped (ANPC) inverter using carrier-based pulse width modulation. The proposed scheme maintains the neutral voltage balance by reconfiguring the switching combination and modulating the reference output voltage in order to solve the degradation of the output characteristic in the fault tolerant operation due to the fault of the power semiconductor switch constituting the ANPC inverter. The feasibility of the proposed control scheme is confirmed by HIL experiment using RT-BOX.

Synchronous Generator Protective Algorithm using Wavelet Transform of Fault Currents (고장전류의 웨이브릿 변환을 이용한 동기 발전기 보호 알고리즘)

  • Park, Chul-Won;Shin, Myong-Chul
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.56 no.5
    • /
    • pp.834-840
    • /
    • 2007
  • A generator plays an important role in transferring an electric power to power system networks. The generator protection systems in Korea have been imported and operated through a tum-key from overseas entirely. Therefore, a study of the generator protection field has in urgent need for a stable operation of the imported goods, and for preparation of next generation protection system. The paper describes the fault detection algorithm using WT(Wave!et Transform) of currents for a generator protection. The fault current signals after executing a terminal fault modeling collect using a MA TLAB package, and calculate the wavelet coefficients through the process of a multi -level decomposition (MLD). The proposed algorithm for a fault detection using the Daubechies WT (wavelet transform) was executed with a C language for the command line function and for the real time realization after analyzing MATLAB's graphical interface. The advanced technique had complemented the defects of a DFT by applying a Daubechies WT. and had improved faster a speed and more accurate of fault discriminant than a conventional DFR.

Application of Wavelet Transform for Fault Discriminant of Generator (발전기의 고장 판별을 위한 웨이브릿 변환의 적용)

  • Park, Chul-Won
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.64 no.1
    • /
    • pp.35-40
    • /
    • 2015
  • Generators are the most complex and expensive single element in a power system. The generator protection relays should to minimize damage during fault states and must be designed for maximum reliability. A conventional CDR(Current Differential Relaying) technique based on DFT(Discrete Fourier Transform) filter have the disadvantages that the time information can lead to loss in the process of converting the signal from the time domain to the frequency domain. A WT(Wavelet transform) and WT analysis is known that it is possible with the local analysis of the fault and transient signal. In this paper, to overcome the defects in the DFT process, an application of WT for fault detection of generator is presented. This paper describes an selection of mother Wavelet to detect faults of generator. Using collected data from the fault simulation with ATPdraw, we analyzed the several mother Wavelet through the course of MLD(multi-level decomposition) using MATLAB software. Finally, it can be seen that the proposed technique using detail coefficient of Daubechies level 2 which can be fault discriminant of generator.

A Study on the Fault Signal Process of Hierarchical Distributed Structure for Highway Maintenance systems using neural Network (신경회로망을 이용한 분산계층 구조용 도로 유지관리설비의 고장정보처리에 관한 연구)

  • 류승기;문학룡;홍규장;최도혁;한태환;유정웅
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.13 no.1
    • /
    • pp.69-76
    • /
    • 1999
  • This paper proposed a design of intelligent supervisory control systems for maintenance of highway traffic information equiprrent and processing algorithm of equiprrent fault data. The fault data of highway traffic equipment are transmitted from rerrnte supervisory controller to central supervisory system by real time, the transmitted fault data are anaIyzed the characteristic using evaluation algorithm of fault data in central supervisory system. The evaluation algorithm includes a neural network and fault knowlOOge-base for processing the multi-generated fault data. For validating the evaluation algorithm of intelligent supervisory control systems, the rrethod of analysis used to the five pattern of binary signal by transmitted real time and the opTclting user-interface constructed in central supervisory system.

  • PDF

A Study on the Implementation of a Multi-processor Scheme for FTCS (FTCS의 Multi-processor 방식 적용에 관한 연구)

  • Moon, B.C.;Kim, J.H.;Kim, B.K.;Bien, Z.
    • Proceedings of the KIEE Conference
    • /
    • 1987.07a
    • /
    • pp.201-204
    • /
    • 1987
  • To improve the reliability of boiler controller of a power plant, FTCS(Fault Tolerant Control System) is proposed. We studied to implement a Multi-processor scheme for FTCS. This paper presents the total system to experiment the performance of FTCS and the Multi-processor scheme implemented.

  • PDF