• Title/Summary/Keyword: Multi-fault

Search Result 406, Processing Time 0.035 seconds

A RFID-based Multi-Robot Management System for Maximizing Operational Efficiency (운용 효율성 극대화를 위한 RFID 기반 멀티 로봇 관리 시스템)

  • An, Sang-Sun;Shin, Sung-Oog;Lee, Jeong-Oog;Baik, Doo-Kwon
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2008.05a
    • /
    • pp.526-529
    • /
    • 2008
  • 로봇의 응용과 활용분야는 현 산업의 주요 이슈가 되고 있다. 현재 싱글로봇의 효율적인 운용을 넘어 전체적인 공간탐색 효율 극대화와 넓은 공간에서 싱글 로봇간의 중복적인 공간 탐색을 최소화하기 위한 자동화된 멀티 로봇 운용 기법은 중요한 연구 주제로 부각되고 있다. 멀티 로봇을 효율적으로 운용하기 위해서는 멀티 로봇 시스템의 각 싱글 로봇의 움직임을 파악하여 효율적으로 업무를 할당 할 수 있는 관리체계가 필요하다. 멀티 로봇의 업무 할당과 중복 탐색 최소화를 위해 본 논문에서는 홈로봇(home robot)과 RFID 시스템을 이용한 멀티 로봇 운영 기법을 제안한다. 제안한 시스템은 로봇들의 Localization, Navigation 및 Mapping을 효율적으로 수행하기 위해 RFID를 활용하고 최적의 공간 할당을 위하여 홈로봇이 각각의 싱글 로봇을 효율적으로 관리한다. 제안된 멀티 로봇 시스템은 싱글 로봇 시스템과 비교하여 시스템 운영의 효율을 극대화할 수 있을 뿐만 아니라 각 싱글 로봇의 상태와 주변 상태를 고려한 fault-tolerance를 제공함으로써 로봇 운용의 신뢰성을 보장할 수 있다. 또한 시뮬레이션을 통해 제안한 시스템과 기존 시스템들을 비교하고 제안한 시스템의 효율성을 입증하였다.

Application of Effective Regularization to Gradient-based Seismic Full Waveform Inversion using Selective Smoothing Coefficients (선택적 평활화 계수를 이용한 그래디언트기반 탄성파 완전파형역산의 효과적인 정규화 기법 적용)

  • Park, Yunhui;Pyun, Sukjoon
    • Geophysics and Geophysical Exploration
    • /
    • v.16 no.4
    • /
    • pp.211-216
    • /
    • 2013
  • In general, smoothing filters regularize functions by reducing differences between adjacent values. The smoothing filters, therefore, can regularize inverse solutions and produce more accurate subsurface structure when we apply it to full waveform inversion. If we apply a smoothing filter with a constant coefficient to subsurface image or velocity model, it will make layer interfaces and fault structures vague because it does not consider any information of geologic structures and variations of velocity. In this study, we develop a selective smoothing regularization technique, which adapts smoothing coefficients according to inversion iteration, to solve the weakness of smoothing regularization with a constant coefficient. First, we determine appropriate frequencies and analyze the corresponding wavenumber coverage. Then, we define effective maximum wavenumber as 99 percentile of wavenumber spectrum in order to choose smoothing coefficients which can effectively limit the wavenumber coverage. By adapting the chosen smoothing coefficients according to the iteration, we can implement multi-scale full waveform inversion while inverting multi-frequency components simultaneously. Through the successful inversion example on a salt model with high-contrast velocity structures, we can note that our method effectively regularizes the inverse solution. We also verify that our scheme is applicable to field data through the numerical example to the synthetic data containing random noise.

Tectonic Structures and Hydrocarbon Potential in the Central Bransfield Basin, Antarctica (남극 브랜스필드 해협 중앙분지의 지체구조 및 석유부존 가능성)

  • Huh Sik;Kim Yeadong;Cheong Dae-Kyo;Jin Young Keun;Nam Sang Heon
    • The Korean Journal of Petroleum Geology
    • /
    • v.5 no.1_2 s.6
    • /
    • pp.9-15
    • /
    • 1997
  • The study area is located in the Central Bransfield Basin, Antarctica. To analyze the morphology of seafloor, structure of basement, and seismic stratigraphy of the sedimentary layers, we have acquired, processed, and interpreted the multi-channel seismic data. The northwest-southeastern back-arc extension dramatically changes seafloor morphology, volcanic and fault distribution, and basin structure along the spreading ridges. The northern continental shelf shows a narrow, steep topography. In contrast, the continental shelf or slope in the south, which is connected to the Antarctic Peninsula, has a gentle gradient. Volcanic activities resulted in the formation of large volcanos and basement highs near the spreading center, and small-scale volcanic diapirs on the shelf. A very long, continuous normal fault characterizes the northern shelf, whereas several basinward synthetic faults probably detach into the master fault in the south. Four transfer faults, the northwest-southeastern deep-parallel structures, controlled the complex distributions of the volcanos, normal faults, depocenters, and possibly hydrocarbon provinces in the study area. They have also deformed the basement structure and depositional pattern. Even though the Bransfield Basin was believed to be formed in the Late Cenozoic (about 4 Ma), the hydrocarbon potential may be very high due to thick sediment accumulation, high organic contents, high heat flow resulted from the active tectonics, and adequate traps.

  • PDF

Online Reorganization of B+ tree in a Scalable and Highly Available Database Cluster (확장 가능한 고가용 데이터베이스 클러스터에서 B+ 트리 색인의 온-라인 재조직 기법)

  • Lee, Chung-Ho;Bae, Hea-Young
    • The KIPS Transactions:PartD
    • /
    • v.9D no.5
    • /
    • pp.801-812
    • /
    • 2002
  • On-line reorganization in a shared nothing database cluster is crucial to the performance of the database system in a dynamic environment like WWW where the number of users grows rapidly and changing access patterns may exhibit high skew. In the existing method of on-line reorganization have a drawback that needs excessive data migrations in case more than two nodes within a cluster have overload at the same time. In this paper, we propose an advanced B$^{+}$ tree based on-line reorganization method that solves data skew on multi-nodes. Our method facilitates fast and efficient data migration by including spare nodes that are added to cluster through on-line scaling. Also we apply CSB$^{+}$ tree (Cache Sensitive B$^{+}$ tree) to our method instead of B$^{+}$ tree for fast select and update queries. We conducted performance study and implemented the method on Ultra Fault-Tolerant Database Cluster developed for high scalability and availability. Empirical results demonstrate that our proposed method is indeed effective and fast than the existing method. method.

A Study on Fault Detection Monitoring and Diagnosis System of CNG Stations based on Principal Component Analysis(PCA) (주성분분석(PCA) 기법에 기반한 CNG 충전소의 이상감지 모니터링 및 진단 시스템 연구)

  • Lee, Kijun;Lee, Bong Woo;Choi, Dong-Hwang;Kim, Tae-Ok;Shin, Dongil
    • Journal of the Korean Institute of Gas
    • /
    • v.18 no.3
    • /
    • pp.53-59
    • /
    • 2014
  • In this study, we suggest a system to build the monitoring model for compressed natural gas (CNG) stations, operated in only non-stationary modes, and perform the real-time monitoring and the abnormality diagnosis using principal component analysis (PCA) that is suitable for processing large amounts of multi-dimensional data among multivariate statistical analysis methods. We build the model by the calculation of the new characteristic variables, called as the major components, finding the factors representing the trend of process operation, or a combination of variables among 7 pressure sensor data and 5 temperature sensor data collected from a CNG station at every second. The real-time monitoring is performed reflecting the data of process operation measured in real-time against the built model. As a result of conducting the test of monitoring in order to improve the accuracy of the system and verification, all data in the normal operation were distinguished as normal. The cause of abnormality could be refined, when abnormality was detected successfully, by tracking the variables out of the score plot.

3-D Geological Structure Interpretation by the Integrated Analysis of Magnetotelluric and Gravity Model at Hwasan Caldera (자기지전류 및 중력 모델의 복합해석을 통한 화산칼데라 지역의 3차원 지질구조 해석)

  • Park, Gye-Soon;Lee, Chun-Ki;Yang, Jun-Mo;Lee, Heui-Soon;Kwon, Byung-Doo
    • Journal of the Korean earth science society
    • /
    • v.32 no.6
    • /
    • pp.548-559
    • /
    • 2011
  • 3-D Multi-geophysical surveys were carried out around the Hwasan caldera at the Euisung Sub-basin. To overcome the limitations of resolutions in previous studies, dense gravity data and magnetotelluric (MT) data were obtained and analyzed. In this study, the independent inversion models from gravity and MT data were integrated using correlation and classification approaches for 3-D imaging of the geologic structures. A Structure Index (SI) method was proposed and applied to the integration and classification analyses. This method consists of Type Angle (TA) and Type Intensity (TI) values, which are estimated by the spatial correlation and abnormality of the physical properties. The SI method allowed the classification analysis to be effectively performed. Major findings are as follows: 1) pyroclastic rocks around the central area of the Hwasan caldera with lower density and resistivity than those of neighboring regions extended to a depth of around 1 km, 2) intrusive igneous rocks with high resistivity and density were imaged around the ring fault boundary, and 3) a basement structure with low resistivity and high density, at a depth of 3-5 km, was inferred by the SI analysis.

Configuration of Test Field for Introduction of IEC 60364-4-44 to Domestic System (IEC 60364-4-44의 국내 도입을 위한 실증시험장 구성)

  • Nam, Kee-Young;Choi, Sang-Bong;Jeong, Seong-Whan;Lee, Jae-Duck;Ryoo, Hee-Suk;Kim, Dae-Kyeong;Jung, Dong-Hak
    • Proceedings of the KIEE Conference
    • /
    • 2007.07a
    • /
    • pp.731-732
    • /
    • 2007
  • This paper presents the final configuration of test field and test items for the application of IEC 60364-4-44 in Korea. IEC 60364-4-44 provides rules for the protection against the effects of conducted and radiated disturbances on electrical installations. Especially this standard deals with the protection of low voltage facility against the ground fault in the high voltage side of power distribution system. Many countries define the regulations on the use of electrical facilities based on their own power system and technical references which are considered to be suitable for them. The background of circuit of IEC 60364-4-44 is based on the ungrounded system as most of European countries. However, domestic electric power distribution system is based on multi-grounding system different from European system. Therefore, it is necessary to evaluate or prove the effect of the IEC 60364-4-44 for introducing and applying it to the domestic grounding system as a national standard. The authors with KEA(Korea Electric Association) carried out a project on the application of IEC 60364-4-44 to Korean electrical installations of buildings sponsored by Korean ministry of commerce, industry and energy for three years(2004.4.1$\sim$2007.3.31). The test field is established in K.E.R.I.(Korea Electrotechnology Research Institute), which is the purpose of evaluating the formula to calculate touch voltage and stress voltage in the IEC standards. This paper presents some considerations and final configuration of test field to evaluate and introduce the IEC 60364-4-44 applicable to domestic rule for the protection against ground fault.

  • PDF

A study on the 3-step classification algorithm for the diagnosis and classification of refrigeration system failures and their types (냉동시스템 고장 진단 및 고장유형 분석을 위한 3단계 분류 알고리즘에 관한 연구)

  • Lee, Kangbae;Park, Sungho;Lee, Hui-Won;Lee, Seung-Jae;Lee, Seung-hyun
    • Journal of the Korea Convergence Society
    • /
    • v.12 no.8
    • /
    • pp.31-37
    • /
    • 2021
  • As the size of buildings increases due to urbanization due to the development of industry, the need to purify the air and maintain a comfortable indoor environment is also increasing. With the development of monitoring technology for refrigeration systems, it has become possible to manage the amount of electricity consumed in buildings. In particular, refrigeration systems account for about 40% of power consumption in commercial buildings. Therefore, in order to develop the refrigeration system failure diagnosis algorithm in this study, the purpose of this study was to understand the structure of the refrigeration system, collect and analyze data generated during the operation of the refrigeration system, and quickly detect and classify failure situations with various types and severity . In particular, in order to improve the classification accuracy of failure types that are difficult to classify, a three-step diagnosis and classification algorithm was developed and proposed. A model based on SVM and LGBM was presented as a classification model suitable for each stage after a number of experiments and hyper-parameter optimization process. In this study, the characteristics affecting failure were preserved as much as possible, and all failure types, including refrigerant-related failures, which had been difficult in previous studies, were derived with excellent results.

Vulnerability Assessment Procedure for the Warship Including the Effect of Shotline and Penetration of Fragments (탄두의 관통 효과를 고려한 함정 취약성 평가 절차에 관한 기본 연구)

  • Kim, Kwang-Sik;Lee, Jang-Hyun
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.49 no.3
    • /
    • pp.254-263
    • /
    • 2012
  • The survivability of warship is assessed by susceptibility, vulnerability and recoverability. Essentially, a vulnerability assessment is a measure of the effectiveness of a warship to resist hostile weapon effects. Considering the shot line and its penetration effect on the warship, present study introduces the procedural aspects of vulnerability assessments of warship. Present study also considers the prediction of penetration damage to a target caused by the impact of projectiles. It reflects the interaction between the weapon and the target from a perspective of vulnerable area method and COVART model. The shotline and tracing calculation have been directly integrated into the vulnerability assessment method based on the penetration equation empirically obtained. A simplified geometric description of the desired target and specification of a threat type is incorporated with the penetration effect. This study describes how to expand the vulnerable area assessment method to the penetration effect. Finally, an example shows that the proposed method can provide the vulnerability parameters of the warship or its component under threat being hit through tracing the shotline path thereby enabling the vulnerability calculation. In addition, the proposed procedure enabling the calculation of the component's multi-hit vulnerability introduces a propulsion system in dealing with redundant Non-overlapping components.

A Wavelet-based Profile Classification using Support Vector Machine (SVM을 이용한 웨이블릿 기반 프로파일 분류에 관한 연구)

  • Kim, Seong-Jun
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.18 no.5
    • /
    • pp.718-723
    • /
    • 2008
  • Bearing is one of the important mechanical elements used in various industrial equipments. Most of failures occurred during the equipment operation result from bearing defects and breakages. Therefore, monitoring of bearings is essential in preventing equipment breakdowns and reducing unexpected loss. The purpose of this paper is to present an online monitoring method to predict bearing states using vibration signals. Bearing vibrations, which are collected as a form of profile signal, are first analyzed by a discrete wavelet transform. Next, some statistical features are obtained from the resultant wavelet coefficients. In order to select significant ones among them, analysis of variance (ANOVA) is employed in this paper. Statistical features screened in this way are used as input variables to support vector machine (SVM). An hierarchical SVM tree is proposed for dealing with multi-class problems. The result of numerical experiments shows that the proposed SVM tree has a competent performance for classifying bearing fault states.