DOI QR코드

DOI QR Code

A Wavelet-based Profile Classification using Support Vector Machine

SVM을 이용한 웨이블릿 기반 프로파일 분류에 관한 연구

  • 김성준 (강릉대학교 산업시스템공학과)
  • Published : 2008.10.25

Abstract

Bearing is one of the important mechanical elements used in various industrial equipments. Most of failures occurred during the equipment operation result from bearing defects and breakages. Therefore, monitoring of bearings is essential in preventing equipment breakdowns and reducing unexpected loss. The purpose of this paper is to present an online monitoring method to predict bearing states using vibration signals. Bearing vibrations, which are collected as a form of profile signal, are first analyzed by a discrete wavelet transform. Next, some statistical features are obtained from the resultant wavelet coefficients. In order to select significant ones among them, analysis of variance (ANOVA) is employed in this paper. Statistical features screened in this way are used as input variables to support vector machine (SVM). An hierarchical SVM tree is proposed for dealing with multi-class problems. The result of numerical experiments shows that the proposed SVM tree has a competent performance for classifying bearing fault states.

베어링은 각종 설비에서 활용되는 중요한 기계요소 중 하나이다. 설비고장의 상당수는 베어링의 결함이나 파손에 기인하고 있다. 따라서 베어링에 대한 온라인모니터링기술은 설비의 정지를 예방하고 손실을 줄이는 데 필수적이다. 본 논문은 진동 신호를 이용하여 베어링의 상태를 예측하기 위한 온라인모니터링에 대해 연구한다. 프로파일로 주어지는 진동신호는 이산 웨이블릿 변환을 통해 분석되고, 분해수준별 웨이블릿 계수로부터 얻은 통계적 특징 중 유의한 것을 선별하고자 분산분석 (ANOVA)을 이용한다. 선별된 특징벡터는 Support Vector Machine (SVM)의 입력이 되는 데, 본 논문에서는 다중클래스 분류문제를 다루기 위한 계층적 SVM 트리를 제안한다. 수치실험 결과, 제안된 방법은 베어링의 결함을 분류하는 데 우수한 성능을 갖는 것으로 나타났다.

Keywords

References

  1. V. Sugumaran, V. Muralidharan, and K. I. Ramachandran, "Feature Selection using Decision Tree and Classification through Proximal Support Vector Machine for Fault Diagnosis of Roller Bearing," Mechanical Systems and Signal Processing, Vol. 21, pp. 930-942, 2007 https://doi.org/10.1016/j.ymssp.2006.05.004
  2. V. Sugumaran, G. R. Sabareesh, and K. I. Ramachandran, "Fault Diagnostics of Roller Bearing using Kernel based Neighborhood Score Multi-class Support Vector Machine," Expert Systems with Applications, Vol. 34, pp. 3090-3098, 2008 https://doi.org/10.1016/j.eswa.2007.06.029
  3. V. Sugumaran and K. I. Ramachandran, "Automatic Rule Learning using Decision Tree for Fuzzy Classifier in Fault Diagnosis of Roller Bearing," Mechanical Systems and Signal Processing, Vol. 21, pp. 2237-2247, 2007 https://doi.org/10.1016/j.ymssp.2006.09.007
  4. R. Yan and R. X. Gao, "An Efficient Approach to Machine Health Diagnosis based on Harmonic Wavelet Packet Transform," Robotics and Computer-Integrated Manufacturing, Vol. 21, pp. 291-301, 2005 https://doi.org/10.1016/j.rcim.2004.10.005
  5. Q. Hu, Z. He, Z. Zhang, and Y. Zi, "Fault Diagnosis of Rotating Machinery base on Improved Wavelet Packet Transform and SVMs Ensemble," Mechanical Systems and Signal Processing, Vol. 21, pp. 688-705, 2007 https://doi.org/10.1016/j.ymssp.2006.01.007
  6. J. Rafiee, F. Arvani, A. Harifi, and M. H. Sadeghi, "Intelligent Condition Monitoring of a Gearbox using Artificial Neural Network," Mechanical Systems and Signal Processing, Vol. 21, pp. 1746-1754, 2007 https://doi.org/10.1016/j.ymssp.2006.08.005
  7. V. N. Vapnik, Statistical Learning Theory, Wiley, New York, 1988
  8. S. R. Gunn, "Support Vector Machines for Classification and Regression," Technical Report, University of Southampton, 1998
  9. 박성현, 현대실험계획법, 민영사, 2003

Cited by

  1. Analysis and Detection Method for Line-shaped Echoes using Support Vector Machine vol.24, pp.6, 2014, https://doi.org/10.5391/JKIIS.2014.24.6.665