• Title/Summary/Keyword: Multi-cyclone

Search Result 34, Processing Time 0.025 seconds

CFD Simulation of Air-particle Flow for Predicting the Collection Efficiency of a Cyclone Separator in Mud Handling System (Mud handling system 내 cyclone separator의 집진효율 추정을 위한 공기-분체의 CFD 시뮬레이션)

  • Jeon, Gyu-Mok;Park, Jong-Chun
    • Journal of Ocean Engineering and Technology
    • /
    • v.33 no.1
    • /
    • pp.42-49
    • /
    • 2019
  • Drilling mud was used once in the step of separating the gas and powder they were transported to a surge tank. At that time, the fine powder, such as dust that is not separated from the gas, is included in the gas that was separated from the mud. The fine particles of the powder are collected to increase the density of the powder and prevent air pollution. To remove particles from air or another gas, a cyclone-type separator generally can be used with the principles of vortex separation without using a filter system. In this study, we conducted numerical simulations of air-particle flow consisting of two components in a cyclone separator in a mud handling system to investigate the characteristics of turbulent vortical flow and to evaluate the collection efficiency using the commercial software, STAR-CCM+. First, the single-phase air flow was simulated and validated through the comparison with experiments (Boysan et al., 1983) and other CFD simulation results (Slack et al., 2000). Then, based on one-way coupling simulation for air and powder particles, the multi-phase flow was simulated, and the collection efficiency for various sizes of particles was compared with the experimental and theoretical results.

A Study on Optimum Design of an Axial Cylcone structure using Response Surface Method (반응표면법을 활용한 축류형 사이클론 구조 최적화 설계에 관한 연구)

  • Cho, Jinill;Yun, Junho;Cho, Yeongkwang;Seok, Hyunho;Kim, Taesung
    • Particle and aerosol research
    • /
    • v.17 no.3
    • /
    • pp.71-79
    • /
    • 2021
  • Ultrafine dust, which is emitted from industrial factories or all kinds of vehicles, threatens the human's respiratory system and our environment. In this regard, separating airborne particles is essential to mitigate the severe problem. In this work, an axial cyclone for the effective technology of eliminating harmful dust is investigated by numerical simulation using Ansys 2020, Fluent R2. In addition, the optimized structure of the cyclone is constructed by means of multi objective optimization based on the response surface method which is a representative method to analyze the effect of design parameter on response variables. Among several design parameters, the modified length of the vortex finder and dust collector is a main point in promoting the performance of the axial cyclone. As a result, the optimized cyclone exhibits remarkable performance when compared to the original model, resulting in pressure drop of 307 Pa and separator efficiency of 98.5%.

Evaluation of Performance Characteristics by Dual Arrangement of Mini-hydrocyclone Separators (미니 하이드로 사이클론 분리기의 이중배열을 통한 성능특성 평가)

  • Kwon, Je-Young;Kim, Seung-Kyung;Hong, Jun-Gyu;Yi, Hyung-Wook;Kang, Myungchang
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.20 no.11
    • /
    • pp.17-23
    • /
    • 2021
  • A cyclone is a dust-separating mechanism that works on the principle of centrifugal force. The performance of a cyclone is evaluated using pressure loss and collection efficiency. A multi-cyclone arrangement is used to improve the collection efficiency within a limited area. In this study, experiments and numerical analyses were conducted on a dual arrangement of mini-hydrocyclone separators, which was fabricated using 3D printing. The experiment was performed at an inlet flow rate of 0.7 m/s, and alumina powder with a particle size of 0.5, 15, and 50 ㎛. ANSYS FLUENT, was used for the numerical analysis. The reliability of the numerical analysis was verified through a comparison with the experimental results. The errors in the experiment and numerical analysis were confirmed to be 2% at the outlet flow rate.

Implementation of an FPGA-based Multi-Carrier PWM Techniques for Multilevel Inverter (FPGA기반 멀티레벨 인버터의 다중 반송신호 PWM 기법 구현)

  • Chun, Tae-Won;Lee, Hong-Hee;Kim, Heung-Geun;Nho, Eui-Cheol
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.15 no.4
    • /
    • pp.288-295
    • /
    • 2010
  • Multi-level inverters have drawn much of attention in recent years because it can meet the demand of high power applications and good power quality associated with reduced harmonic distortion. As the number of voltage level increases, field programmable gate arrays (FPGAs) are suitable for the implementation of multi-level modulation algorithm. This paper proposes the implementation method for generating PWM pulses at the three phase diode clamped five-level inverter using FPGA. The strategy for communicating stably the data of three-phase reference voltages between the DSP and FPGA is suggested. The techniques for generating PWM signals based on a multi-carrier modulation method are carried out through the experiments with 32-bit DSP and Cyclone-III FPGA.

Performance Evaluation on Single Nozzle and Multi-Nozzle Virtual Impactors (단일 노즐 및 멀티-노즐 가상 임팩터의 성능평가)

  • 김대성;김민철;이규원
    • Proceedings of the Korea Air Pollution Research Association Conference
    • /
    • 2000.11a
    • /
    • pp.59-60
    • /
    • 2000
  • 에어로졸을 분리할 수 있는 장비로는 전기적 이동차 분석기(differential mobility analyzer), 싸이클론(cyclone), 습식 충돌기(impinger), 습식 싸이클론(wet cyclone), 확산 배터리(diffusion battery), 관성 임팩터(inertial impactor), 그리고 가상 임팩터(virtual impactor) 등이 있다. 이중 가상 임팩터는 설계 및 제작이 비교적 간편하고, 입자를 분리 및 농축하는데도 좋은 성능을 나타냄으로 널리 사용되어져 왔다. (중략)

  • PDF

Extreme wind speeds from multiple wind hazards excluding tropical cyclones

  • Lombardo, Franklin T.
    • Wind and Structures
    • /
    • v.19 no.5
    • /
    • pp.467-480
    • /
    • 2014
  • The estimation of wind speed values used in codes and standards is an integral part of the wind load evaluation process. In a number of codes and standards, wind speeds outside of tropical cyclone prone regions are estimated using a single probability distribution developed from observed wind speed data, with no distinction made between the types of causal wind hazard (e.g., thunderstorm). Non-tropical cyclone wind hazards (i.e., thunderstorm, non-thunderstorm) have been shown to possess different probability distributions and estimation of non-tropical cyclone wind speeds based on a single probability distribution has been shown to underestimate wind speeds. Current treatment of non-tropical cyclone wind hazards in worldwide codes and standards is touched upon in this work. Meteorological data is available at a considerable number of United States (U.S.) stations that have information on wind speed as well as the type of causal wind hazard. In this paper, probability distributions are fit to distinct storm types (i.e., thunderstorm and non-thunderstorm) and the results of these distributions are compared to fitting a single probability distribution to all data regardless of storm type (i.e., co-mingled). Distributions fitted to data separated by storm type and co-mingled data will also be compared to a derived (i.e., "mixed") probability distribution considering multiple storm types independently. This paper will analyze two extreme value distributions (e.g., Gumbel, generalized Pareto). It is shown that mixed probability distribution, on average, is a more conservative measure for extreme wind speed estimation. Using a mixed distribution is especially conservative in situations where a given wind speed value for either storm type has a similar probability of occurrence, and/or when a less frequent storm type produces the highest overall wind speeds. U.S. areas prone to multiple non-tropical cyclone wind hazards are identified.

An advanced study of multi-stage type hydrocyclone dust collector for fish egg collecting using Visualization (가시화기법을 이용한 다단형 하이드로 사이클론 어란 (魚卵) 집진장치의 개선에 관한 연구)

  • CHOI, Eunhee;PYEON, Yongbeom;LEE, Seung-heon;LEE, Kyounghoon
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.53 no.4
    • /
    • pp.404-412
    • /
    • 2017
  • A centrifugal cyclone dust collecting apparatus includes a hydro cyclone dust collecting apparatus for separating solid or liquid using liquid or suspension as a medium. In this study, the formation mechanism and improvement of air core and inner air layer were confirmed through Particle Image Velocimetry. These results showed that the modified experimental model was designed in the conventional method suitable for the separation of juvenile fish and eggs. The inlet speed of the multi-stage hydrocyclone dust collector, which can increase the inlet velocity and minimize floatage in the turbulence chamber, was increased from 0.15 to 0.30 m/s. As a result, the air core was stably formed, the inner air layer was increased with increasing speed. In addition, the dust collecting efficiency of egg and juvenile fish was 97.8% on average, It can infer that this system confirmed the ability to efficiently collect particles of $40{\mu}m$ or more.

A Consensus Technique for Tropical Cyclone Intensity Prediction over the Western North Pacific (북서태평양 태풍 강도 예측 컨센서스 기법)

  • Oh, Youjung;Moon, Il-Ju;Lee, Woojeong
    • Atmosphere
    • /
    • v.28 no.3
    • /
    • pp.291-303
    • /
    • 2018
  • In this study, a new consensus technique for predicting tropical cyclone (TC) intensity in the western North Pacific was developed. The most important feature of the present consensus model is to select and combine the guidance numerical models with the best performance in the previous years based on various evaluation criteria and averaging methods. Specifically, the performance of the guidance models was evaluated using both the mean absolute error and the correlation coefficient for each forecast lead time, and the number of the numerical models used for the consensus model was not fixed. In averaging multiple models, both simple and weighted methods are used. These approaches are important because that the performance of the available guidance models differs according to forecast lead time and is changing every year. In particular, this study develops both a multi-consensus model (M-CON), which constructs the best consensus models with the lowest error for each forecast lead time, and a single best consensus model (S-CON) having the lowest 72-hour cumulative mean error, through on training process. The evaluation results of the selected consensus models for the training and forecast periods reveal that the M-CON and S-CON outperform the individual best-performance guidance models. In particular, the M-CON showed the best overall performance, having advantages in the early stages of prediction. This study finally suggests that forecaster needs to use the latest evaluation results of the guidance models every year rather than rely on the well-known accuracy of models for a long time to reduce prediction error.

A Study on the Implementation of a Data Acquisition System with a Large Number of Multiple Signal (다채널 다중신호 데이터 획득 시스템의 구현에 관한 연구)

  • Son, Do-Sun;Lee, Sang-Hoon
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.20 no.3
    • /
    • pp.326-331
    • /
    • 2010
  • This paper presents the design and implementation of a data acquisition system with a large number of multi-channels for manufacturing machine. The system having a throughput of 800-ch analog signals has been designed with Quartus II tool and Cyclone II FPGA. The proposed system is suitable for the large scale data handling in order to distinguish whether the operation is correct or not. The designed system is composed of a control unit, voltage divider and USB interface. To reduce the data throughput, we utilized an algorithm which can extract the same data from the achieved data. The test results of the system adapted to a manufacturing machine, show a relevant data acquisition operation of 800 channels in short time.