• Title/Summary/Keyword: Multi-component Injection molding

Search Result 7, Processing Time 0.022 seconds

Development of an Expert System for Multi-component Injection Molding (다재 사출성형 전문가 시스템 개발)

  • 강신일
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 1999.03b
    • /
    • pp.213-217
    • /
    • 1999
  • An expert system is developed for rational and efficient design of multi-component injection molding which is a fairly new manufacturing technique to produce plastic parts by injecting two or more materials sequentially using multiple injection units in a single machine into a single rotary mold. The knowledge base used in the present design system is primarily composed of two parts ; knowledge from domain expert and knowledge from CAE analysis. The present expert system has hour main modules ; general design guidelines for injection molding specific guidelines for multi-component injection molding redesign guidelines from the result of the CAE analysis and finally troubleshooting for multi-component injection molding. To show the validity of the present design methodology two shop floor design problems were tested ; design and fabrication of timing belt cover and power window's assist knob by using multi-component injection molding.

  • PDF

Optimization of Multi-component Injection Molding Process Based on Core-back System (코어백 방식을 이용한 동시사출 성형 공정 최적화 연구)

  • Choi, Dong-Jo;Park, Hong-Seok
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.17 no.2
    • /
    • pp.67-74
    • /
    • 2009
  • Injection molding have been used for manufacturing various fields of automotive interior trims for years. The demands on the injection molding technique are grown with the further development of the automobile technique and the design presentations for cost reduction and environment-friendly. This paper shows that multi-component injection conditions are different from general injection, also shows how to optimize part design and mold design and how to manufacturing through the efficient use of multi-component injection in development process using core back system. To fulfill this purpose, all influential process parameters related to the quality of automobile parts were analyzed in terms of the correlation between them. Base on that, a innovative process will be developed by injection engineers to implement it in practice.

Development of Thermoplastic-Thermoset Multi Component Injection Mold for a Waterproof Connector (방수커넥터용 열가소성-열경화성 이종소재 사출금형 개발)

  • Jung, T. S.;Choi, K. S.
    • Transactions of Materials Processing
    • /
    • v.24 no.6
    • /
    • pp.418-425
    • /
    • 2015
  • Based on eco-friendly advantages and the enhanced development in the chemical and physical characteristics, liquid silicone rubber (LSR) is widely used in producing precision parts in the automotive, medical, electronics, aeronautical and many other industries. In the current work, a thermoplastic-thermoset multi component injection molding (MCM) was developed for a waterproof automotive connector housing using PBT and LSR resins. Measurements of the rheological characteristics of PBT and LSR were made to improve the reliability of the numerical analysis for the multi component injection process. With the measured viscosity, pvT and curing data, numerical analysis of the multi cycle injection molding was conducted using simulation software (Sigma V5.0).

A study on the manufacturing of metal/plastic multi-components using the DSI molding (DSI 성형을 이용한 금속/플라스틱 복합 부품 제조에 관한 연구)

  • Ha, Seok-Jae;Cha, Baeg-Soon;Ko, Young-Bae
    • Design & Manufacturing
    • /
    • v.14 no.4
    • /
    • pp.71-77
    • /
    • 2020
  • Various manufacturing technologies, including over-molding and insert-injection molding, are used to produce hybrid plastics and metals. However, there are disadvantages to these technologies, as they require several steps in manufacturing and are limited to what can be reasonably achieved within the complexities of part geometry. This study aims to determine a practical approach for producing metal/plastic hybrid components by combining plastic injection molding and metal die casting to create a new hybrid metal/plastic molding process. The integrated metal/plastic hybrid injection molding process developed in this study uses the proven method of multi-component technology as a basis to combine plastic injection molding with metal die casting into one integrated process. In this study, the electrical conductivity and ampacity were verified to qualify the new process for the production of parts used in electronic devices. The electrical conductivity was measured, contacting both sides of the test sample with constant pressure, and the resistivity was measured using a micro ohmmeter. Also, the specific conductivity was subsequently calculated from the resistivity and contact surface of the conductor path. The ampacity defines the maximum amount of current a conductive path can carry before sustaining immediate or progressive deterioration. The manufactured hybrid multi-components were loaded with increasing currents, while the temperature was recorded with an infrared camera. To compare the measured infrared images, an electro-thermal simulation was conducted using commercial CAE software to predict the maximum temperature of the power loaded parts. Overall, during the injection molding process, it was demonstrated that multifunctional parts can be produced for electric and electronic applications.

An Experimental Study on the HEV/EV Traction Motor Rotor Core in Injection Molding Analysis (사출성형해석을 이용한 HEV/EV 구동모터 회전자 철심에 관한 실험적 연구)

  • Hong, Kyeong-Il;Jung, Hyun-Suk;Choi, Kyeo-Gwang;Kim, Se-Hwan;Lim, Se-Jong
    • Design & Manufacturing
    • /
    • v.9 no.1
    • /
    • pp.9-13
    • /
    • 2015
  • The HEV/EV Traction Motor Core manufacturing technology is a core component of Traction Motor Core is a key technology for the manufacture of eco-friendly automotive industry is essential for the competitiveness of the country must obtain the technology. This study was performed to develop a Rotor Core of the HEV/EV Traction Motor using the first time in Korea multi-gate BMC injection molding technique. Executed by the experiment of this study are as follows. Study 1: Developed a multi-gate BMC injection mold for the magnet fixed to the Rotor Core. Study 2: Developed a production implementation and manufacturing technology of the Rotor Core. In this study, the develop products and manufacturing technologies implemented by the BMC injection mold development for Magnet fixed to the Rotor Core and the results are discussed.

  • PDF

Effect of Debinding and Sintering Conditions on the Tensile Properties of Water-atomized STS 316 L Parts by Powder Injection Molding (수분무 STS 316L 분말사출성형체의 탈지 및 소결공정에 따른 인장 특성)

  • 윤태식;성환진;안상호;이종수
    • Journal of Powder Materials
    • /
    • v.9 no.4
    • /
    • pp.218-226
    • /
    • 2002
  • The purpose of the present study is to investigate the influence of thermal debinding and sintering conditions on the sintering behavior and mechanical properties of PIMed 316L stainless steel. The water atomized powders were mixed with multi-component wax-base binder system, injection molded into flat tensile specimens. Binder was removed by solvent immersion method followed by thermal debinding, which was carried out in air and hydrogen atmospheres. Sintering was done in hydrogen for 1 hour at temperatures ranging from 1000℃ to 1350℃ The weight loss, residual carbon and oxygen contents were monitored at each stage of debinding and sintering processes. Tensile properties of the sintered specimen varied depending on the densification and the characteristics of the grain boundaries, which includes the pore morphology and residual oxides at the boundaries. The sinter density, tensile strength (UTS), and elongation to fracture of the optimized specimen were 95%, 540 MPa, and 53%, respectively.