본 논문에서는 기존의 MMOSPRED(MultiMedia One Step Prediction)에 의한 멀티미디어 호의 자원 요구량(채널 수)의 예측방법을 개선한 적응 MMOSPRED 기법을 제안하고, 이 기법을 사용한 멀티미디어 무선망의 호 수락제어의 성능을 분석한다. 제안된 적응기법은 자원 요구량의 예측시간 동안 고정된 표준 정규분포의 확률변수 값을 갖는 기존의 MMOSPRED 방법과는 다르게 LMS 알고리즘을 사용하여 자원의 예측 오차량을 최소화시킨다. 시뮬레이션을 통하여 제안된 방법에 의한 자원의 예측 오차량이 기존의 방법보다 감소함을 보이고, 제안된 적응예측기법을 사용한 호 수락제어는 기존의 방법보다 미래의 핸드오프 호 가 요구하는 자원의 양을 상대적으로 정확히 예측함으로써, 원하는 핸드오프 호 손실확률에서 신규 호의 수락율을 증가시킴으로써 호 수락제어의 성능이 향상됨을 보인다.
In this paper, we propose an Elman recurrent neural network to predict and analyze a time series of power energy consumption. To this end, we consider the volatility of the time series and apply the sample variance and the detrended fluctuation analyses to the volatilities. We demonstrate that there exists a correlation in the time series of the volatilities, which suggests that the power consumption time series contain a non-negligible amount of the non-linear correlation. Based on this finding, we adopt the Elman recurrent neural network as the model for the prediction of the power consumption. As the simplest form of the recurrent network, the Elman network is designed to learn sequential or time-varying pattern and could predict learned series of values. The Elman network has a layer of "context units" in addition to a standard feedforward network. By adjusting two parameters in the model and performing the cross validation, we demonstrated that the proposed model predicts the power consumption with the relative errors and the average errors in the range of 2%~5% and 3kWh~8kWh, respectively. To further confirm the experimental results, we performed two types of the cross validations designed for the time series data. We also support the validity of the model by analyzing the multi-step forecasting. We found that the prediction errors tend to be saturated although they increase as the prediction time step increases. The results of this study can be used to the energy management system in terms of the effective control of the cross usage of the electric and the gas energies.
단속류에서는 신호제어에 의한 정확한 통행시간 추정에 어려움이 많으므로 기존 교통정보 수집체계로부터 얻을 수 있는 자료를 가공하여 운전자 및 교통정보 이용자에게 보다 신뢰성 있는 정보를 제공하여야한다. 또한 시간의 변화에 따른 장래의 최적경로는 개별구간에 대한 장래의 구간속도를 예측해야만 가능하므로 과거의 원시자료만으로 나타나지 않는 교통류의 변동에 따른 도로의 소통상태가 반영되어야 한다. 따라서 본 연구에서는 영상검지기 자료 및 AVI 자료의 특성을 효과적으로 통합하기 위해 영상검지기자료를 이용한 KHCM 방식의 추정법을 통해 링크별 통행특성을 파악하고, 이러한 특성비율을 보정계수로 적용하여 AVI에서 수집된 구간통행시간정보에 반영함으로써 보다 정확한 링크별 통행시간을 산출하는 데이터 융합기법을 도출하였고, 평가 결과(RMSE, EC 등) 또한 우수하였다. 이 기법을 이용한 링크별 통행시간정보는 운전자가 이동하고자 하는 구간이 AVI의 제공범위에 미치지 못하거나 넘어서는 경우, 원하는 총 통행구간의 시간정보를 예측할 수 있다는 의의를 지닌다. 또한 실제 차량은 시 공간적인 이동을 하기 때문에 동시간대의 링크통행시간을 이용한 정보는 실제 통행시간과 비교해 볼 때 상당한 시간처짐 (Time-lag)현상을 가져온다. 따라서, 시간주기별로 변화하는 차량의 시 공간적 이동을 고려한 다주기 예측의 개념을 도입하였으며, 칼만필터링을 활용한 다주기 예측모형의 평가결과(RMSE, EC등) 현실을 잘 반영하는 모형임이 증명되었다.
제어로봇시스템학회 1994년도 Proceedings of the Korea Automatic Control Conference, 9th (KACC) ; Taejeon, Korea; 17-20 Oct. 1994
/
pp.173-176
/
1994
In this paper a closed-form predictive control which takes the intervalwise receding horizon strategy is presented and its stability properties are investigated. A slate-space form output predictor is derived which is composed of the one-step ahead optimal output prediction, input and output data of the system. A set of feedback gains are obtained using the dynamic programming algorithm so that they minimize a multi-stage quadratic cost function and they are used periodically.
Large planar military antenna boasts a range of electrical components, including TRA(Transmit-Receive Assembly), signal processors, etc. which engage in computations and calculations. These processes generate a significant amount of heat, leading to unforeseen consequences for the equipment. To mitigate these adverse effects, it's imperative to implement a cooling system that can effectively reduce heat-related issues. Given the antenna's intricate nature and the multitude of components it houses, a two-step estimation process is necessary. The first step involves a comprehensive model calculation to determine the total flow characteristics, while the second step entails a thermal analysis of individual TRA set. In this study, we depicted an antenna set using simplified 3D models of its components, considering their material and thermal properties. The sequential analysis process facilitated the calculation of branched flow rates, providing insights into the individual TRA. This approach also allowed us to design a cooling system for the TRA set, assessing its thermal stability in high-temperature environments. To ensure the optimal performance of TRA, breaking down the analysis into stages based on the cooling system's structure can assist operators in predicting numerical results more effectively.
Journal of the Korean Data and Information Science Society
/
제27권1호
/
pp.1-8
/
2016
최근 강력 범죄 및 우발 범죄가 끊이지 않고 있으면서 사회적 불안감이 고조되고 있다. 이에 따라 방범용 카메라, CCTV (Closed Circuit Television)가 범죄 증거 확보와 치안을 위해 사용되고 있다. 그러나 CCTV는 주로 사후 처리 기능으로 사용하고 있으며 사전에 범죄를 예방하기는 힘들다. 본 연구에서는 CCTV로부터 수집된 보행자 데이터를 이용하여 객체의 행동을 분석하고 위험 행동 여부를 추정하기 위한 유연성 다중 회귀 모델을 제안한다. 유연성 다중 회귀 모델은 필터링, 상황분석, 예측 단계로 구성되어 있다. 먼저 보행자에 대한 환경과 상황에 대해 필터링한 후 상황분석에 대한 정보를 구축하고 관찰 객체에 이상 행동이 결정된다. 마지막으로 연관분석을 통해 객체의 행동이 예측되어 위협 상황을 통지한다. 이를 통해 다중 지역에서 객체의 행동을 추적하여 객체 행동의 위험여부를 알 수 있으며, 행동 예측을 통해 범죄 발생을 예측 가능하다.
본 논문에서는 항만 자동화를 위해 새로이 제안된 리니어 모터 기반 컨테이너 이송시스템에 지능제어기법을 이용하여 그 정밀도를 향상시키고자 한다. LMCTS(Linear Motor-based Container Transfer System)는 스케일의 거대함 때문에 일반 리니어 모터에서 중요시 되지 않는 정지마찰력과 디텐트럭(detent force)이 정밀제어에 큰 문제가 된다. 특히, 컨테이너 적제유무에 따라 시스템 자체가 급격히 변하므로 기존의 PID형 제어기로는 좋은 성능을 얻기 어렵다. 따라서 본 논문에서는 같은 구조를 갖는 두 개의 DR-FNN(Dynamically- constructed Recurrent Fuzzy Neural Network)를 제어기와 에뮬레이터로 구성하여 이러한 문제를 해결하고자 하였다.
DMC(Dynamic Matrix Control) algorithm has been successfully used in industries for more than a decade. It can handle constraints and easily extended to MIMO case. The application of DMC, however, is limited to the open loop stable process because it uses the FIR(Finite Impulse Response) or FSR(Finite Step Response) model. Integrating process widely used in chemical process industry, is the representative open loop unstable process. The disturbance rejection of DMC is relatively poor due to the assumption that the current disturbance is equivalent to the future disturbance. We propose the IDMC(Improved Dynamic Matrix Control) for the integrating process, as well as non-integrating process. IDMC has shown better disturbance rejection using multi-step ahead predictor for the disturbance.
The neural network predictiv econtroller (NNPC) is proposed for the attempt to mimic the function of brain that forecasts the future. It consists of two loops, one is for the prediction of output (NNP:neural network predictor) and the other one is for control the plant(NNC: neural network controller). The output of NNC makes the control input of plant, which is followed by the variation of both plant error and predictin error. The NNP forecasts the future output based upon the current control input and the estimated control output. The input and the output data of a system and a new method using evolution strategy are used to train the NNP. A two-step NNPC is applied to control the temeprature in boiler systems. It was compared with PI controller and auto-tuning PID controller. The computer simulaton and experimental results show that the proposed method has better performances than the other method.
This paper presents a generalized predictive control method based on a fuzzy neural network(FNN) model, which uses the on-line multi-step prediction, fur the intelligent control of chaotic nonlinear systems whose mathematical models are unknown. In our design method, the parameters of both predictor and controller are tuned by a simple gradient descent scheme, and the weight parameters of FNN are determined adaptively during the operation of the system. In order to design a generalized predictive controller effectively, this paper describes computing procedure for each of the two important parameters. Also, we introduce a projection matrix to determine the control input, which deceases the control performance function very rapidly. Finally, in order to evaluate the performance of our controller, the proposed method is applied to the Doffing and Henon systems, which are two representative continuous-time and discrete-time chaotic nonlinear systems, res reactively.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.