• 제목/요약/키워드: Multi-Model Ensemble

검색결과 98건 처리시간 0.026초

The Characteristics of Signal versus Noise SST Variability in the North Pacific and the Tropical Pacific Ocean

  • Yeh, Sang-Wook;Kirtman, Ben P.
    • Ocean Science Journal
    • /
    • 제41권1호
    • /
    • pp.1-10
    • /
    • 2006
  • Total sea surface temperature (SST) in a coupled GCM is diagnosed by separating the variability into signal variance and noise variance. The signal and the noise is calculated from multi-decadal simulations from the COLA anomaly coupled GCM and the interactive ensemble model by assuming both simulations have a similar signal variance. The interactive ensemble model is a new coupling strategy that is designed to increase signal to noise ratio by using an ensemble of atmospheric realizations coupled to a single ocean model. The procedure for separating the signal and the noise variability presented here does not rely on any ad hoc temporal or spatial filter. Based on these simulations, we find that the signal versus the noise of SST variability in the North Pacific is significantly different from that in the equatorial Pacific. The noise SST variability explains the majority of the total variability in the North Pacific, whereas the signal dominates in the deep tropics. It is also found that the spatial characteristics of the signal and the noise are also distinct in the North Pacific and equatorial Pacific.

PNU CGCM V1.1을 이용한 12개월 앙상블 예측 시스템의 개발 (Development of 12-month Ensemble Prediction System Using PNU CGCM V1.1)

  • 안중배;이수봉;류상범
    • 대기
    • /
    • 제22권4호
    • /
    • pp.455-464
    • /
    • 2012
  • This study investigates a 12 month-lead predictability of PNU Coupled General Circulation Model (CGCM) V1.1 hindcast, for which an oceanic data assimilated initialization is used to generate ocean initial condition. The CGCM, a participant model of APEC Climate Center (APCC) long-lead multi-model ensemble system, has been initialized at each and every month and performed 12-month-lead hindcast for each month during 1980 to 2011. The 12-month-lead hindcast consisted of 2-5 ensembles and this study verified the ensemble averaged hindcast. As for the sea-surface temperature concerns, it remained high level of confidence especially over the tropical Pacific and the mid-latitude central Pacific with slight declining of temporal correlation coefficients (TCC) as lead month increased. The CGCM revealed trustworthy ENSO prediction skills in most of hindcasts, in particular. For atmospheric variables, like air temperature, precipitation, and geopotential height at 500hPa, reliable prediction results have been shown during entire lead time in most of domain, particularly over the equatorial region. Though the TCCs of hindcasted precipitation are lower than other variables, a skillful precipitation forecasts is also shown over highly variable regions such as ITCZ. This study also revealed that there are seasonal and regional dependencies on predictability for each variable and lead.

스태킹 앙상블 모델을 이용한 시간별 지상 오존 공간내삽 정확도 향상 (Improved Estimation of Hourly Surface Ozone Concentrations using Stacking Ensemble-based Spatial Interpolation)

  • 김예진;강은진;조동진;이시우;임정호
    • 한국지리정보학회지
    • /
    • 제25권3호
    • /
    • pp.74-99
    • /
    • 2022
  • 지상 오존은 차량 및 산업 현장에서 배출된 질소화합물(Nitrogen oxides; NOx)과 휘발성 유기화합물(Volatile Organic Compounds; VOCs)의 광화학 반응을 통해 생성되어 식생 및 인체에 악영향을 끼친다. 국내에서는 실시간 오존 모니터링을 수행하고 있지만 관측소 기반으로, 미관측 지역의 공간 분포 분석에 어려움이 있다. 본 연구에서는 스태킹 앙상블 기법을 활용하여 매시간 남한 지역의 지상 오존 농도를 1.5km의 공간해상도로 공간내삽하였고, 5-fold 교차검증을 수행하였다. 스태킹 앙상블의 베이스 모델로는 코크리깅(Cokriging), 다중 선형 회귀(Multi-Linear Regression; MLR), 랜덤 포레스트(Random Forest; RF), 서포트 벡터 회귀(Support Vector Regression; SVR)를 사용하였다. 각 모델의 정확도 비교 평가 결과, 스태킹 앙상블 모델이 연구 기간 내 시간별 평균 R 및 RMSE이 0.76, 0.0065ppm으로 가장 높은 성능을 보여주었다. 스태킹 앙상블 모델의 지상 오존 농도 지도는 복잡한 지형 및 도시화 변수의 특징이 잘 드러나며 더 넓은 농도 범위를 보여주었다. 개발된 모델은 매시간 공간적으로 연속적인 공간 지도를 산출할 수 있을 뿐만 아니라 8시간 평균치 산출 및 시계열 분석에 있어서도 활용 가능성이 클 것으로 기대된다.

Design optimization of a nuclear main steam safety valve based on an E-AHF ensemble surrogate model

  • Chaoyong Zong;Maolin Shi;Qingye Li;Fuwen Liu;Weihao Zhou;Xueguan Song
    • Nuclear Engineering and Technology
    • /
    • 제54권11호
    • /
    • pp.4181-4194
    • /
    • 2022
  • Main steam safety valves are commonly used in nuclear power plants to provide final protections from overpressure events. Blowdown and dynamic stability are two critical characteristics of safety valves. However, due to the parameter sensitivity and multi-parameter features of safety valves, using traditional method to design and/or optimize them is generally difficult and/or inefficient. To overcome these problems, a surrogate model-based valve design optimization is carried out in this study, of particular interest are methods of valve surrogate modeling, valve parameters global sensitivity analysis and valve performance optimization. To construct the surrogate model, Design of Experiments (DoE) and Computational Fluid Dynamics (CFD) simulations of the safety valve were performed successively, thereby an ensemble surrogate model (E-AHF) was built for valve blowdown and stability predictions. With the developed E-AHF model, global sensitivity analysis (GSA) on the valve parameters was performed, thereby five primary parameters that affect valve performance were identified. Finally, the k-sigma method is used to conduct the robust optimization on the valve. After optimization, the valve remains stable, the minimum blowdown of the safety valve is reduced greatly from 13.30% to 2.70%, and the corresponding variance is reduced from 1.04 to 0.65 as well, confirming the feasibility and effectiveness of the optimization method proposed in this paper.

다중 기상모델 앙상블을 활용한 다지점 강우시나리오 상세화 기법 개발 (Development of Multisite Spatio-Temporal Downscaling Model for Rainfall Using GCM Multi Model Ensemble)

  • 김태정;김기영;권현한
    • 대한토목학회논문집
    • /
    • 제35권2호
    • /
    • pp.327-340
    • /
    • 2015
  • 기후모형으로 가장 널리 사용되는 GCM의 불확실성 및 시공간적 편의로 인하여 GCM으로부터 생산된 기상정보를 응용수문분야에서 직접적으로 이용하기 위해서는 상세화 과정이 필수적으로 요구된다. 본 연구에서는 선행연구에서 개발된 비정상성 은닉 마코프 모형(Non-stationary Hidden Markov Chain Model, NHMM)을 기반으로 다지점 공간상관성을 고려할 수 있는 Chow-Liu Tree 알고리즘과 결합하여 유역단위 강우시나리오 상세화 기법(CLT-NHMM)으로 확장하였으며, 낙동강 유역에 적용하여 적용성을 평가하였다. 상관행렬(correlation matrix)을 통한 강우네트워크의 공간상관성 평가결과 유역상관성이 우수하게 모의하는 것을 확인하였으며, 강수의 빈도 및 양적 관점에서 효과적인 모의가 가능하였다. 본 연구에서 제시한 CLT-NHMM 모형은 수자원뿐만 아니라 수문자료를 입력 자료로 하는 농업, 보건, 환경 및 에너지 등 다양한 응용기상분야에 핵심 기술로 활용이 전망된다.

Contactless User Identification System using Multi-channel Palm Images Facilitated by Triple Attention U-Net and CNN Classifier Ensemble Models

  • Kim, Inki;Kim, Beomjun;Woo, Sunghee;Gwak, Jeonghwan
    • 한국컴퓨터정보학회논문지
    • /
    • 제27권3호
    • /
    • pp.33-43
    • /
    • 2022
  • 본 논문에서는 기존의 스마트폰 카메라 센서를 사용하여 비접촉식 손바닥 기반 사용자 식별 시스템을 구축하기 위해 Attention U-Net 모델과 사전 훈련된 컨볼루션 신경망(CNN)이 있는 다채널 손바닥 이미지를 이용한 앙상블 모델을 제안한다. Attention U-Net 모델은 손바닥(손가락 포함), 손바닥(손바닥 미포함) 및 손금을 포함한 관심 영역을 추출하는 데 사용되며, 이는 앙상블 분류기로 입력되는 멀티채널 이미지를 생성하기 위해 결합 된다. 생성된 데이터는 제안된 손바닥 정보 기반 사용자 식별 시스템에 입력되며 사전 훈련된 CNN 모델 3개를 앙상블 한 분류기를 사용하여 클래스를 예측한다. 제안된 모델은 각각 98.60%, 98.61%, 98.61%, 98.61%의 분류 정확도, 정밀도, 재현율, F1-Score를 달성할 수 있음을 입증하며, 이는 저렴한 이미지 센서를 사용하고 있음에도 불구하고 제안된 모델이 효과적이라는 것을 나타낸다. 본 논문에서 제안하는 모델은 COVID-19 펜데믹 상황에서 기존 시스템에 비하여 높은 안전성과 신뢰성으로 대안이 될 수 있다.

An Efficient Deep Learning Ensemble Using a Distribution of Label Embedding

  • Park, Saerom
    • 한국컴퓨터정보학회논문지
    • /
    • 제26권1호
    • /
    • pp.27-35
    • /
    • 2021
  • 본 연구에서는 레이블 임베딩의 분포를 반영하는 딥러닝 모형을 위한 새로운 스태킹 앙상블 방법론을 제안하였다. 제안된 앙상블 방법론은 기본 딥러닝 분류기를 학습하는 과정과 학습된 모형으로 부터 얻어진 레이블 임베딩을 이용한 군집화 결과로부터 소분류기들을 학습하는 과정으로 이루어져 있다. 본 방법론은 주어진 다중 분류 문제를 군집화 결과를 활용하여 소 문제들로 나누는 것을 기본으로 한다. 군집화에 사용되는 레이블 임베딩은 처음 학습한 기본 딥러닝 분류기의 마지막 층의 가중치로부터 얻어질 수 있다. 군집화 결과를 기반으로 군집화 내의 클래스들을 분류하는 소분류기들을 군집의 수만큼 구축하여 학습한다. 실험 결과 기본 분류기로부터의 레이블 임베딩이 클래스 간의 관계를 잘 반영한다는 것을 확인하였고, 이를 기반으로 한 앙상블 방법론이 CIFAR 100 데이터에 대해서 분류 성능을 향상시킬 수 있다는 것을 확인할 수 있었다.

Projecting the spatial-temporal trends of extreme climatology in South Korea based on optimal multi-model ensemble members

  • Mirza Junaid Ahmad;Kyung-sook Choi
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2023년도 학술발표회
    • /
    • pp.314-314
    • /
    • 2023
  • Extreme climate events can have a large impact on human life by hampering social, environmental, and economic development. Global circulation models (GCMs) are the widely used numerical models to understand the anticipated future climate change. However, different GCMs can project different future climates due to structural differences, varying initial boundary conditions and assumptions about the physical phenomena. The multi-model ensemble (MME) approach can improve the uncertainties associated with the different GCM outcomes. In this study, a comprehensive rating metric was used to select the best-performing GCMs out of 11 CMIP5 and 13 CMIP6 GCMs, according to their skills in terms of four temporal and five spatial performance indices, in replicating the 21 extreme climate indices during the baseline (1975-2017) in South Korea. The MME data were derived by averaging the simulations from all selected GCMs and three top-ranked GCMs. The random forest (RF) algorithm was also used to derive the MME data from the three top-ranked GCMs. The RF-derived MME data of the three top-ranked GCMs showed the highest performance in simulating the baseline extreme climate which was subsequently used to project the future extreme climate indices under both the representative concentration pathway (RCP) and the socioeconomic concentration pathway scenarios (SSP). The extreme cold and warming indices had declining and increasing trends, respectively, and most extreme precipitation indices had increasing trends over the period 2031-2100. Compared to all scenarios, RCP8.5 showed drastic changes in future extreme climate indices. The coasts in the east, south and west had stronger warming than the rest of the country, while mountain areas in the north experienced more extreme cold. While extreme cold climatology gradually declined from north to south, extreme warming climatology continuously grew from coastal to inland and northern mountainous regions. The results showed that the socially, environmentally and agriculturally important regions of South Korea were at increased risk of facing the detrimental impacts of extreme climatology.

  • PDF

기후변화에 따른 국내 홍수 취약성 평가 (Korean Flood Vulnerability Assessment on Climate Change)

  • 이문환;정일원;배덕효
    • 한국수자원학회논문집
    • /
    • 제44권8호
    • /
    • pp.653-666
    • /
    • 2011
  • 본 연구에서는 기후변화에 따른 홍수 취약성 평가기법을 제안하고 국내 5대강 유역에 적용 및 평가하고자 하였다. 특히 Multi-Model Ensemble 시나리오를 이용하여 평가 시 발생하는 불확실성을 제시하고자 하였다. 취약성 평가를 위해 우선 유역의 기상, 수문 자료를 비롯한 지형, 인문 사회 정보를 수집, 지표를 산정하여 현재 기후상태 하에서의 홍수 취약성을 평가하였다. 또한 기후변화에 따른 미래 홍수 취약성을 평가하기 위해 기존에 3개 온실가스 배출시나리오, 13개 GCMs (Global Climate Models), 3개 수문모형(2~3개 증발산량 산정방법)으로 생산된 39개 미래 기후시나리오 및 312개 미래 수문시나리오를 이용하여 기준 S0 (1971~2000년) 기간 대비 미래 S1 (2010~2039년), S2 (2040~2069년), S3 (2070~2099년)기간의 홍수 취약성의 시공간적 변화 및 불확실성을 평가하였다. 평가 결과 현재 기후상황에서 홍수에 취약한 지역은 한강, 섬진강, 영산강 하류 지역으로 나타났으며, 미래 기후변화 시나리오를 고려한 결과 낙동강, 금강, 한강 권역에서의 민감도가 가장 크게 변할 것으로 분석되었으나, 기본적으로 섬진강 유역의 적응능력이 낮기 때문에 미래에도 섬진강 유역이 홍수에 가장 취약할 것으로 분석되었다.

Proper Noun Embedding Model for the Korean Dependency Parsing

  • Nam, Gyu-Hyeon;Lee, Hyun-Young;Kang, Seung-Shik
    • Journal of Multimedia Information System
    • /
    • 제9권2호
    • /
    • pp.93-102
    • /
    • 2022
  • Dependency parsing is a decision problem of the syntactic relation between words in a sentence. Recently, deep learning models are used for dependency parsing based on the word representations in a continuous vector space. However, it causes a mislabeled tagging problem for the proper nouns that rarely appear in the training corpus because it is difficult to express out-of-vocabulary (OOV) words in a continuous vector space. To solve the OOV problem in dependency parsing, we explored the proper noun embedding method according to the embedding unit. Before representing words in a continuous vector space, we replace the proper nouns with a special token and train them for the contextual features by using the multi-layer bidirectional LSTM. Two models of the syllable-based and morpheme-based unit are proposed for proper noun embedding and the performance of the dependency parsing is more improved in the ensemble model than each syllable and morpheme embedding model. The experimental results showed that our ensemble model improved 1.69%p in UAS and 2.17%p in LAS than the same arc-eager approach-based Malt parser.