DOI QR코드

DOI QR Code

Korean Flood Vulnerability Assessment on Climate Change

기후변화에 따른 국내 홍수 취약성 평가

  • Lee, Moon-Hwan (Dept. of Civil and Environmental Engrg., Sejong Univ.) ;
  • Jung, Il-Won (Dept. of Geography, Portland State University) ;
  • Bae, Deg-Hyo (Dept. of Civil and Environmental Engrg., Sejong Univ.)
  • 이문환 (세종대학교 공과대학 토목환경공학과) ;
  • 정일원 (포틀랜드주립대학교 지리학과) ;
  • 배덕효 (세종대학교 공과대학 토목환경공학과)
  • Received : 2011.01.31
  • Accepted : 2011.07.07
  • Published : 2011.08.31

Abstract

The purposes of this study are to suggest flood vulnerability assessment method on climate change with evaluation of this method over the 5 river basins and to present the uncertainty range of assessment using multi-model ensemble scenarios. In this study, the data related to past historical flood events were collected and flood vulnerability index was calculated. The vulnerability assessment were also performed under current climate system. For future climate change scenario, the 39 climate scenarios are obtained from 3 different emission scenarios and 13 GCMs provided by IPCC DDC and 312 hydrology scenarios from 3 hydrological models and 2~3 potential evapotranspiration computation methods for the climate scenarios. Finally, the spatial and temporal changes of flood vulnerability and the range of uncertainty were performed for future S1 (2010~2039), S2 (2040~2069), S3 (2070~2099) period compared to reference S0 (1971~2000) period. The results of this study shows that vulnerable region's were Han and Sumjin, Youngsan river basins under current climate system. Considering the climate scenarios, variability in Nakdong, Gum and Han river basins are large, but Sumjin river basin had little variability due to low basic-stream ability to adaptation.

본 연구에서는 기후변화에 따른 홍수 취약성 평가기법을 제안하고 국내 5대강 유역에 적용 및 평가하고자 하였다. 특히 Multi-Model Ensemble 시나리오를 이용하여 평가 시 발생하는 불확실성을 제시하고자 하였다. 취약성 평가를 위해 우선 유역의 기상, 수문 자료를 비롯한 지형, 인문 사회 정보를 수집, 지표를 산정하여 현재 기후상태 하에서의 홍수 취약성을 평가하였다. 또한 기후변화에 따른 미래 홍수 취약성을 평가하기 위해 기존에 3개 온실가스 배출시나리오, 13개 GCMs (Global Climate Models), 3개 수문모형(2~3개 증발산량 산정방법)으로 생산된 39개 미래 기후시나리오 및 312개 미래 수문시나리오를 이용하여 기준 S0 (1971~2000년) 기간 대비 미래 S1 (2010~2039년), S2 (2040~2069년), S3 (2070~2099년)기간의 홍수 취약성의 시공간적 변화 및 불확실성을 평가하였다. 평가 결과 현재 기후상황에서 홍수에 취약한 지역은 한강, 섬진강, 영산강 하류 지역으로 나타났으며, 미래 기후변화 시나리오를 고려한 결과 낙동강, 금강, 한강 권역에서의 민감도가 가장 크게 변할 것으로 분석되었으나, 기본적으로 섬진강 유역의 적응능력이 낮기 때문에 미래에도 섬진강 유역이 홍수에 가장 취약할 것으로 분석되었다.

Keywords

References

  1. 교육과학기술부(2011) 기후변화에 의한 국가 수자원 영향 분석 및 평가 체계 적용, 수자원의 지속적확보기술개발 사업단, 교육과학기술부.
  2. 김병식, 김보경, 경민수, 김형수(2008). "기후변화가 극한 강우와 I-D-F 분석에 미치는 영향 평가." 한국수자원학회논문집, 한국수자원학회, 제41권, 제4호, pp. 379-394.
  3. 배덕효, 정일원, 이병주, 전태현, 이문환(2011). "GCM과 수문모형의 불확실성을 고려한 기후변화에 따른 한반도 미래 수자원 전망." 한국수자원학회논문집, 한국수자원학회, In press.
  4. 손경환, 이병주, 배덕효(2010). "Multi-GCMs의 기후시나리오를 이용한 홍수특성변화 평가." 한국수자원학회논문집, 한국수자원학회, 제43권, 제9호, pp. 789-799. https://doi.org/10.3741/JKWRA.2010.43.9.789
  5. 신진호, 이효신, 권원태, 김민지(2009). "한반도 미래 기온 변화 예측을 위한 ECHO-G/S 시나리오의 통계적 상세화에 관한 연구." 대기, 한국기상학회, 제19권, 제2호, pp. 107-125.
  6. 윤용남, 유철상, 이재수, 안재현(1999a). "지구온난화에 따른 홍수 및 가뭄 발생빈도의 변화와 관련하여 : 1. 연/월강수량의 변화에 따른 일강수량 분포의 변화분석." 한국수자원학회논문집, 한국수자원학회, 제32권, 제6호, pp. 617-625.
  7. 윤용남, 유철상, 이재수, 안재현(1999b). "지구온난화에따른 홍수 및 가뭄 발생빈도의 변화와 관련하여 : 2. 지구온난화에 따른 일강수량 분포의 변화 추정." 한국수자원학회논문집, 한국수자원학회, 제32권, 제6호, pp. 627-636.
  8. 정일원(2008). 혼합상세화 기법을 적용한 국내 수자원의 기후변화영향평가. 박사학위논문, 세종대학교, pp. 136-148.
  9. 정일원, 이병주, 전태현, 배덕효(2008). "유출모형이 기후 변화수자원영향평가에 미치는영향분석." 한국수자원학회논문집, 한국수자원학회, 제41권, 제9호, pp. 907-917.
  10. 정일원, 장희준, 배덕효(2010). "기후변동에 대한 한국 하천유량의 변동성." 한국수자원학회논문집, 한국수자원학회, 제43권, 제10호, pp. 851-864.
  11. Arnold, J.G., Allen, P.M., and Bemhardt, G. (1993). "A comprehensive surface-groundwater flow model." Journal of Hydrology, Vol. 142, pp. 47-69. https://doi.org/10.1016/0022-1694(93)90004-S
  12. Bae, D.H., Jung, I.W., and Chang, H. (2008a). "Longterm trend of precipitation and runoff in Korean river basins." Hydrological Processes, Vol. 22, No. 14, pp. 2644-2656. https://doi.org/10.1002/hyp.6861
  13. Bae, D.H., Jung, I.W., and Chang, H. (2008b). "Potential changes in Korean water resources estimated by high-resolution climate simulation." Climate Research, Vol. 35, pp. 213-226. https://doi.org/10.3354/cr00704
  14. Balica, S.F., Douben, N., and Wright, N.G. (2009). "Flood vulnerability indices at varing spatial scales." Water Science & Technology, Vol. 60, No. 10, pp. 2571-2580. https://doi.org/10.2166/wst.2009.183
  15. Barroca, B., Bernardara, P., Mouchel, J.M., and Hubert, G. (2006). "Indicators for identification of urban flooding vulnerability." Natural Hazards and Earth System Sciences, Vol. 6, pp. 553-561. https://doi.org/10.5194/nhess-6-553-2006
  16. Cameron, D. (2006). "An application of the UKCIP02 climate change scenarios to flood estimation by continuous simulation for a gauged catchment in the northeast of scotland, UK." Journal of Hydrology, Vol. 328, pp. 212-226. https://doi.org/10.1016/j.jhydrol.2005.12.024
  17. Choi, Y. (2002). "Changes on frequency and magnitude of heavy rainfall events in Korea", Journal of the Korean Data Analysis Society, Vol. 4, No. 3, pp. 269-282.
  18. Connor, R.F., and Hiroki, K. (2005). "Development of a method for assessing flood vulnerability." Water Science & Technology, Vol. 51, No. 5, pp. 61-67.
  19. Dankers, R., Christensen, O.B., Feyen, L., Kalas, M., and Roo, A. (2007). "Evaluation of very high resolution climate model data for simulating flood hazards in the Upper Danube Basin." Journal of Hydrology, Vol. 347, pp. 319-331. https://doi.org/10.1016/j.jhydrol.2007.09.055
  20. Fekete, A. (2009). "Validation of a social vulnerability index in context to river-floods in Germany." Natural Hazards and Earth System Sciences, Vol. 9, pp. 393-403. https://doi.org/10.5194/nhess-9-393-2009
  21. Hall, J.W., Sayers, P.B., and Dawson, R.J. (2005). "National-scale assessment of current and future flood risk in England and Wales", Natural Hazard, Vol. 36, No. 1-2, pp. 147-164. https://doi.org/10.1007/s11069-004-4546-7
  22. Huang, Y., Zou, Y., Huang, G., and Maqsood, I. (2005). "Flood vulnerability to climate change through hydrological modeling." International Water Resources Association, Vol. 30, No. 1, pp. 31-39. https://doi.org/10.1080/02508060508691834
  23. IPCC(2001). Climate change 2001: Impacts, adaptation and vulnerability contribution of Working Group II to the third assessment report of the intergovernmental panel on climate change, Cambridge University Press, Cambridge, pp. 75-104
  24. Jung, I.W., Bae, D.H., and Kim, G. (2011). "Recent trends of mean and extreme precipitation in Korea." International Journal of Climatology, Vol. 31, No. 3, pp. 359-370. https://doi.org/10.1002/joc.2068
  25. Kite, G.W., Dalton, A., and Dion, K. (1994). "Simulation of streamflow in a macroscale watershed using general circulation model data." Water Resources Research, Vol. 30, No. 5, pp. 1547-1559. https://doi.org/10.1029/94WR00231
  26. Leavesley, G.H., Lichty, R.W., Troutman, B.M., and Saindon, L.G. (1983). "Precipitation-runoff modeling system." User's manual, by Water-Resources Investigations, pp. 83-4238.
  27. Rygel, L., O'Sullivan, D., and Yarnal, B. (2006). "A method for constructing a social vulnerability index: An application to hurricane storm surges in a developed country, mitigation and adaptation strategies for global change." Earth and Environmental Science, Vol. 11, pp. 741-764.
  28. UNDP (2005) Adaptation policy frameworks for climate change: Developing strategies, policies, and measures, Cambridge University Press, USA, pp. 67-90.
  29. Veijalainen, N., Lotsari, E., Alho, P., Vehvilainen, B., and Kayhko, J. (2010). "National scale assessment of climate change impacts on flooding in Finland." Journal of Hydrology, Vol. 391, pp. 333-350. https://doi.org/10.1016/j.jhydrol.2010.07.035
  30. Watson, R.T., Zinyowera, M.C., and Moss, R.H. (1996). "Climate change 1995" in impacts, adaptations and mitigation of climate change: Scientific-Technical Analyses, Cambridge University Press, Cambridge.

Cited by

  1. Assessment of Potential Flood Damage Considering Regional Flood Damage Cycle vol.57, pp.4, 2015, https://doi.org/10.5389/KSAE.2015.57.4.143
  2. Development and Evaluation of Potential Flood Damage Index for Public Facilities vol.58, pp.4, 2016, https://doi.org/10.5389/KSAE.2016.58.4.097
  3. The Application Assessment of Future Design Rainfall Estimation Method Using Scale Properties vol.45, pp.3, 2012, https://doi.org/10.3741/JKWRA.2012.45.3.253
  4. Projecting Future Climate Change Scenarios Using Three Bias-Correction Methods vol.2014, 2014, https://doi.org/10.1155/2014/704151
  5. Assessment of Inundation Risk Degree for Urban Areas vol.13, pp.1, 2013, https://doi.org/10.9798/KOSHAM.2013.13.1.129
  6. Assessment of Flood Damage Vulnerability Considering Regional Flood Damage Characteristics in South Korea vol.13, pp.4, 2013, https://doi.org/10.9798/KOSHAM.2013.13.4.245
  7. Assessment of water use vulnerability in the unit watersheds using TOPSIS approach with subjective and objective weights vol.49, pp.8, 2016, https://doi.org/10.3741/JKWRA.2016.49.8.685
  8. Spatially-explicit assessment of flood risk caused by climate change in South Korea vol.17, pp.1, 2013, https://doi.org/10.1007/s12205-013-1609-x
  9. Climate Change Vulnerability Assessment in Rural Areas - Case study in Seocheon - vol.20, pp.4, 2014, https://doi.org/10.7851/ksrp.2014.20.4.145
  10. A Study on the Assessment Method for High-risk Urban Inundation Area Using Flood Vulnerability Index vol.12, pp.2, 2012, https://doi.org/10.9798/KOSHAM.2012.12.2.245
  11. Evaluation of Hybrid Downscaling Method Combined Regional Climate Model with Step-Wise Scaling Method vol.46, pp.6, 2013, https://doi.org/10.3741/JKWRA.2013.46.6.585
  12. Development of a Precipitation Gauge Using Ultrasonic Measuring Technique vol.17, pp.11, 2013, https://doi.org/10.6109/jkiice.2013.17.11.2745
  13. Lake Environmental Risk Index using PSR Framework vol.14, pp.2, 2014, https://doi.org/10.9798/KOSHAM.2014.14.2.317
  14. Flood Vulnerability Analysis in Seoul considering Gender Factors vol.18, pp.6, 2018, https://doi.org/10.9798/KOSHAM.2018.18.6.301
  15. Comparison of Flood Vulnerability Assessment Outcomes by Classification Schemes for Vulnerability Components to Climate Change vol.18, pp.3, 2018, https://doi.org/10.9798/KOSHAM.2018.18.3.221
  16. Development of the Water Disaster Vulnerability Index and Evaluation of Water Disaster Vulnerability in the Asian Monsoon Region vol.18, pp.7, 2018, https://doi.org/10.9798/KOSHAM.2018.18.7.457