• Title/Summary/Keyword: Multi-Manipulator

Search Result 118, Processing Time 0.024 seconds

A Robust Observer Design for Nonlinear MIMO Plants using Time-Delayed Signals

  • Lee, Jeong-Wan;Chang, Pyung-Hun
    • Transactions on Control, Automation and Systems Engineering
    • /
    • v.1 no.1
    • /
    • pp.22-31
    • /
    • 1999
  • In this paper, a robust observer design method for nonlinear multi input multi-output(MINO) plants is presented. This method enables the extension of the time delay observer (TDO) for nonlinear SISO plants in the phase variable form to MIMO plants. The designed TDO reconstructs the states of the plant expressed in the generalized observability canonical form (GOBCF), yet requiring neither the transformation of a plant, nor the real time computation coordinates, the observer turned out to be computationally efficient and easy to design for nonlinear MIMO plants. In a simulation of a two-link manipulator with flexible joints, the control performances using TDO appeared to be similar to those using actual states and superior to those using numerical differentiation. Finally, in an experiment with a robot, it was confirmed that the TDO reconstructs the states reliability and TDO can be effectively used in a real closed-loop system.

  • PDF

A Study on Design of Underactuated Robot Hand driven by Shape Memory Alloy (형상기억합금 Underactuated 로봇 핸드의 설계에 관한 연구)

  • Kim, Gwang-Ho;Shin, Sang-Ho;Jeong, Sang-Hwa
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.10 no.5
    • /
    • pp.51-57
    • /
    • 2011
  • The lightweight and compact actuator with high power is required to perform motion with multiple degrees of freedom. To reduce the size and inertia of a robot manipulator, the mechanical transmission system is used. The shape memory alloy(SMA) is similar to the muscle-tendon-bone network of a human hand. However, there are some drawback and nonlinearity, such as the hysteresis and the stress dependence. In this paper, the design of the underactuated robot hand is studied. The 3-finger dexterous hand is driven by the SMA actuator using segmental mechanism. This digital approach enables to overcome the nonlinearity of SMA wire. The translational displacement of SMA actuator required to bend a phalanx of the underactuated robot hand is estimated and the bending angle of the underactuated robot hand according to input displacement of SMA actuator is predicted by the multi-body dynamic analysis.

Adaptive Model Reference Control Based on Takagi-Sugeno Fuzzy Models with Applications to Flexible Joint Manipulators

  • Lee, Jongbae;Lim, Joon-hong;Park, Chang-Woo;Kim, Seungho
    • Journal of Mechanical Science and Technology
    • /
    • v.18 no.3
    • /
    • pp.337-346
    • /
    • 2004
  • The control scheme using fuzzy modeling and Parallel Distributed Compensation (PDC) concept is proposed to provide asymptotic tracking of a reference signal for the flexible joint manipulators with uncertain parameters. From Lyapunov stability analysis and simulation results, the developed control law and adaptive law guarantee the boundedness of all signals in the closed-loop multi-input/multi-output system. In addition, the plant state tracks the state of the reference model asymptotically with time for any bounded reference input signal.

Process Development of Laser Cladding for Weld Inlay Repair of Dissimilar Metal Weld in Reactor Vessel In/Outlet Nozzles (원자로 입출구 노즐 이종금속 용접부 Weld Inlay 레이저 클래딩 공정 개발)

  • Cho, Hong Seok;Jung, Kwang Woon;Mo, Min Hwan;Cho, Ki Hyun;Choi, Dong Chul;Lee, Jang Wook;Cho, Sang Beum
    • Transactions of the Korean Society of Pressure Vessels and Piping
    • /
    • v.11 no.1
    • /
    • pp.53-60
    • /
    • 2015
  • This study was investigated to develop process technology of laser cladding with austenite stainless steel for Weld Inlay repair of dissimilar metal weld in reactor vessel in/outlet nozzles. Weld Inlay experiments were performed by laser cladding repair system consisting of common manipulator, laser apparatus and welding process scheduler, etc. Single pass welding experiments were conducted in order to obtain the optimum welding process parameters for filler wires of ER309L and Alloy 52M before multi-layer laser cladding. Based on the above obtained results, multi-layer laser cladding experiments were carried out, and welding qualities for weld specimens were estimated by PT, OM, SEM and EDS analysis. Consequently, it was revealed that multi-layer laser cladding on austenite stainless steel using filler wires of ER309L and Alloy 52M could be possible to meet ASME Code standard without any weld defect.

Performance Evaluation of Multi-Degree-of-Freedom Robotic Mixer using Discrete Element Mixing Simulations (이산요소법 교반 시뮬레이션을 이용한 다자유도 로봇 믹서 성능 평가)

  • Son, Kwon Joong
    • Journal of the Korea Convergence Society
    • /
    • v.11 no.10
    • /
    • pp.219-224
    • /
    • 2020
  • Industrial mixers to homogeneously blend particulate materials have been developed and widely used in various industries. However, most industrial mixers have at most two-degree-of-freedom for the operation, which limits the range of operation parameter selection for optimal blending. This paper proposes a multi-degree-of-freedom robotic mixer designed by converging a conventional drum blender and a robotic manipulator and evaluated its performance in a virtual operating environment. Discrete element simulations were conducted for mixing performance evaluation. The numerical results showed that the proposed mixer design exhibits a better mixing performance than conventional ones.

The Estimation for the Forward Kinematic Solution of Stewart Platform Using the Neural Network (신경망 기법을 이용한 스튜어트 플랫폼의 순기구학 추정)

  • Lee, Hyung-Sang;Han, Myung-Chul;Lee, Min-Chul
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.16 no.8
    • /
    • pp.186-192
    • /
    • 1999
  • This paper introduces a study of a method for the forward kinematic analysis, which finds the 6 DOF motions and velocities from the given six cylinder lengths in the Stewart platform. From the viewpoints of kinematics, the solution for the inverse kinematic is easily found by using the vectors of the links which are composed of the joint coordinates in base and plate frames, to act contrary to the serial manipulator, but forward kinematic is difficult because of the nonlinearity and complexity of the Stewart platform dynamic equation with the multi-solutions. Hence we, first in this study, introduce the linear estimator using the Luenberger's observer, and the estimator using the nonlinear measured model for the forward kinematic solutions. But it is difficult to find the parameter of the design for the estimation gain or to select the estimation gain and the constant steady state error exists. So this study suggests the estimator with the estimation gain to be learned by the neural network with the structure of multi-perceptron and the learning method using back propagation and shows the estimation performance using the simulation.

  • PDF

A Study on the Multi-Joint Rehabilitation System of an Industrial Robot

  • Lee, Yong-Seok;Jang, Jae-Ho;Sim, Hyung-Joon;Han, Chang-Soo;Han, Jung-Soo
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.92-95
    • /
    • 2004
  • This study proposes an industrial rehabilitation robot system which can exercise two joints in 3 dimensional spaces. The robot kinematics analysis and the results of studies on each joint for the rehabilitation robot could verify possibility of rehabilitation motion to exercise a joint. The force and torques sensor not only measures a rehabilitation performance of subjects between the abnormal limb and the manipulator, but also carries out an important function of safety device to prevent accidents. Also, limit sensors and emergency stop switch are used for high safety in this system. In this real test, the possibility of rehabilitation robot system is evaluated by C&R ARM I which is similar to upper-limb.

  • PDF

A Study on the Multi-Purpose Rehabilitation System for the Upper Limb Using a Robot Manipulator (로봇을 이용한 다기능 상지 재활 시스템에 관한 연구)

  • 원주연;심형준;박범석;한창수
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.20 no.11
    • /
    • pp.171-179
    • /
    • 2003
  • This paper presents a rehabilitation exercise system which utilizes a 6 DOF robot as a motion generator. This system was proposed for a stroke patient or a patient who has hemiplegia. A master-slave system was designed to exercise either paralysis or abnormal limb by using normal limb motion. The study on the human body was applied to calculate the motion range of elbows and shoulders. In addition, a force-torque sensor was applied to the slave robot to estimate the rehabilitation extent of the patient. Therefore, the stability of the rehabilitation robot could be improved. By using the rehabilitation robot. the patients could exercise by themselves without assistance. In conclusion, the proposed system was verified by computer simulations and system experiment.

Development of Humanoid Joint Module for Safe Human-Robot Interaction (인간과의 안전한 상호 작용을 고려한 휴머노이드 조인트 모듈 개발)

  • Oh, Yeon Taek
    • The Journal of Korea Robotics Society
    • /
    • v.9 no.4
    • /
    • pp.264-271
    • /
    • 2014
  • In this study, we have developed the humanoid joint modules which provide a variety of service while living with people in the future home life. The most important requirement is ensuring the safety for humans of the robot system for collaboration with people and providing physical service in dynamic changing environment. Therefore we should construct the mechanism and control system that each joint of the robot should response sensitively and rapidly to fulfill that. In this study, we have analyzed the characteristic of the joint which based on the target constituting the humanoid motion, developed the optimal actuator system which can be controlled based on each joint characteristic, and developed the control system which can control an multi-joint system at a high speed. In particular, in the design of the joint, we have defined back-drivability at the safety perspective and developed an actuator unit to maximize. Therefore we establish a foundation element technology for future commercialization of intelligent service robots.

Visual servoing of robot manipulators using the neural network with optimal structure (최적화된 신경회로망을 이용한 동적물체의 비주얼 서보잉)

  • 김대준;전효병;심귀보
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1996.10b
    • /
    • pp.302-305
    • /
    • 1996
  • This paper presents a visual servoing combined by Neural Network with optimal structure and predictive control for robotic manipulators to tracking or grasping of the moving object. Using the four feature image information from CCD camera attached to end-effector of RV-M2 robot manipulator having 5 dof, we want to predict the updated position of the object. The Kalman filter is used to estimate the motion parameters, namely the state vector of the moving object in successive image frames, and using the multi layer feedforward neural network that permits the connection of other layers, evolutionary programming(EP) that search the structure and weight of the neural network, and evolution strategies(ES) which training the weight of neuron, we optimized the net structure of control scheme. The validity and effectiveness of the proposed control scheme and predictive control of moving object will be verified by computer simulation.

  • PDF