• 제목/요약/키워드: Multi-Joint Robot

Search Result 105, Processing Time 0.024 seconds

Research about Intelligent Snake Robot (지능형 뱀 로봇에 관한 연구)

  • Kim, Seong-Joo;Kim, Jong-Soo;Jeon, Hong-Tae
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.13 no.1
    • /
    • pp.70-75
    • /
    • 2003
  • There come various types of robot with researches for mobile robot. This paper introduces the multi-joint snake robot having 16 degree of freedom and composing of eight-axis. The biological snake robot uses the forward movement friction and the proposed artificial snake robot uses the un-powered wheel instead of the body of snake. To determine the enable joint angle of each joint, the controller inputs are considered such as color and distance using PC Camera and ultra-sonic sensor module, respectively. The movement method of snake robot is sequential moving from head to tail through body. The target for movement direction is decided by a certain article be displayed in the PC Camera. In moving toward that target, if there is any obstacle then the snake robot can avoid by itself. In this paper, we show the method of snake robot for tracing the target with experiment.

Dynamic Analysis of Multi-Robot System Forcing Closed Kinematic Chain (복수로봇 시스템의 동력학적 연구-대상물과 닫힌 체인을 형성할때의 문제-)

  • 유범상
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.19 no.4
    • /
    • pp.1023-1032
    • /
    • 1995
  • The multiple cooperating robot system plays an important role in the research of modern manufacturing system as the emphasis of production automation is more on the side of flexibility than before. While the kinematic and dynamic analysis of a single robot is performed as an open-loop chain, the dynamic formulation of robot in a multiple cooperating robot system differs from that of a single robot when the multiple cooperating robots form a closed kinematic chain holding an object simultaneously. The object may be any type from a rigid body to a multi-joint linkage. The mobility of the system depends on the kinematic configuration of the closed kinematic chain formed by robots and object, which also decides the number of independent input parameters. Since the mobility is not the same as the number of robot joints, proper constraint condition is sought. The constraints may be such that : the number of active robot joints is kept the same as mobility, all robot joints are active and have interrelations between each joint forces/torques, two robots have master-slave relation, or so on. The dynamic formulation of system is obtained. The formulation is based on recursive dual-number screw-calculus Newton-Eulerian approach which has been used for single robot analysis. This new scheme is recursive and compact symbolically and may facilitate the consideration of the object in real time.

Applying Design Pattern & Refactoring on Implementing RTOS for the Small Educational Multi-Joint Robot (소형 교육용 다관절로봇 RTOS 구현을 위한 디자인 패턴 & 리팩토링 적용)

  • Son, Hyun-Seung;Kim, Woo-Yeol;Ahn, Hong-Young;Kim, Robert Young-Chul
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.9 no.3
    • /
    • pp.217-224
    • /
    • 2009
  • The traditional small educational multi-joint robots were developed on firmware. In these system's case, we cann't give a chance to educate good practices due on executing just robot's simple movements. But it may be possible for RTOS to control the elaborate movement of the robot with assembling each part on firmware. With this RTOS, we can enhance the efficiency of robot's movements, but too difficult to use the education as increasing the complexity of robot system. To solve the problem, we apply with Design pattern and Refactoring for the Education. Applying robot's design with Design pattern and Refactoring. There may be easily understand what and how to design RTOS for any level ones. We may easily change/upgrade RTOS for new system with this approach. This paper mentions to design RTOS with Design patterns and to apply RTOS's source code with Refactoring.

  • PDF

A Study on the Multi-Joint Rehabilitation System of an Industrial Robot

  • Lee, Yong-Seok;Jang, Jae-Ho;Sim, Hyung-Joon;Han, Chang-Soo;Han, Jung-Soo
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.92-95
    • /
    • 2004
  • This study proposes an industrial rehabilitation robot system which can exercise two joints in 3 dimensional spaces. The robot kinematics analysis and the results of studies on each joint for the rehabilitation robot could verify possibility of rehabilitation motion to exercise a joint. The force and torques sensor not only measures a rehabilitation performance of subjects between the abnormal limb and the manipulator, but also carries out an important function of safety device to prevent accidents. Also, limit sensors and emergency stop switch are used for high safety in this system. In this real test, the possibility of rehabilitation robot system is evaluated by C&R ARM I which is similar to upper-limb.

  • PDF

Independent point Adaptive Fuzzy Sliding Mode Control of Robot Manipulator (로봇 매니퓰레이터의 독립관절 적응퍼지슬라이딩모드 제어)

  • Kim, Young-Tae;Lee, Dong-Wook
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.19 no.2
    • /
    • pp.126-132
    • /
    • 2002
  • Robot manipulator has highly nonlinear dynamics. Therefore the control of multi-link robot arms is a challenging and difficult problem. In this paper an independent joint adaptive fuzzy sliding mode scheme is developed leer control of robot manipulators. The proposed scheme does not require an accurate manipulator dynamic model, yet it guarantees asymptotic trajectory tracking despite gross robot parameter variations. Numerical simulation for independent joint control of a 3-axis PUMA arm will also be included.

Independent Joint Adaptive Control of Robot Manipulator Using the Sugeno-type of Fuzzy Logic (Sugeno형태 퍼지 논리를 이용한 로봇 매니플레이터의 독립관절 적응제어)

  • 김영태
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.20 no.6
    • /
    • pp.55-61
    • /
    • 2003
  • Control of multi-link robot arms is a challenging and difficult problem because of the highly nonlinear dynamics. Independent joint adaptive scheme is developed for control of robot manipulators based on Sugeno-type of fuzzy logic. Fuzzy logic system is used to approximate the coupling forces among the joints, coriolis force, centrifugal force, gravitational force, and frictional forces. The proposed scheme does not require an accurate manipulator dynamic, and it is proved that closed-loop system is asymptotic stable despite the gross robot parameter variations. Numerical simulations for three-axis PUMA robot are included to show the effectiveness of controller.

A Study on Computer Simulation of Joint Compliance for a Biped Robot (이족 보행 로봇의 관절부위 유연특성 시뮬레이션에 관한 연구)

  • Lee, Ki-Joo;Park, Joong-Kyung;Lim, Si-Hyung;Yim, Hong-Jae
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.17 no.10
    • /
    • pp.907-911
    • /
    • 2007
  • Compliance of joints must be considered when we analyze dynamics of a multi-body system. If the virtual model for CAE(computer aided engineering) analysis does not consider compliance, the result of CAE analysis can be very different from the actual experimental result. Especially in a biped walking robot, the robot may lose walking stability due to the compliance in joints of a walking robot. This paper proposed a method applying a compliance of joints in the biped walking robot to a virtual model. Also, through the 3-D displacement measurement using a laser tracker, it was demonstrated that the virtual model considering the joint compliance could effectively simulate the nonlinear motion of the real model.

Vibration Control of a Flexible Two-link Manipulator based on the Sliding Mode Control (슬라이딩 모우드 제어에 기초한 유연한 2링크 조작기의 진동제어)

  • Chae, Seung-Hoon;Yang, Hyun-Seok;Park, Young-Phil
    • Proceedings of the KSME Conference
    • /
    • 2000.04a
    • /
    • pp.511-516
    • /
    • 2000
  • In order to not only perform as a extreme model under the severe operating condition but also acquire more diverse and advanced control capability utilizing high compliance, active vibration control of a flexible 2-link robot manipulator are investigated. Multi variable-structured frequency shaped optimal sliding mode is proposed for the flexible robot manipulator like control system, whose control variables, an angular motion of joint and vibration of flexible link, have to be controlled simultaneously by one control torque at a driving joint. The control system is divided into two subsystems, a control input related subsystem and an added subsystem. The proposed sliding mode, composed of multi control variables, makes optimized relation between subsystems and a individual control input, thus, the sliding mode controller can compensate whole dynamics of each subsystems simultaneously. And the possibility and effectiveness are verified by vibration control of a manipulator having two flexible links. Simulation and experiment results show that the proposed control scheme achieves the purpose effectively.

  • PDF

A Study on Design and Durability Analysis of Vertical Multi-Jointed Robot with Translational Joint to adapt in the High Temperature Environment (고온 환경에서 적용 가능한 병진관절을 갖는 수직 다관절 로봇시스템 개발 및 내구성 분석에 관한 연구)

  • Kim, Du-Beum;Kim, Hui-Jin;Bae, Ho-Young;Kim, Sang-Hyun;Im, O-Duek;Han, Sung-Hyun;Kang, Jung-Seok;Noh, Sung-Hoon
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.22 no.3
    • /
    • pp.337-351
    • /
    • 2019
  • We Proposed a new technology to develop vertical type multi-joint robot system enable to adapt in high temperature environment. The main contents is a new approach to design a vertical type articulated robot with prismatic joint and analysis of thermal for process automation of casting and forging. The proposed robot is suitable to use handling working parts of casting and forging. for the manufacturing process of forging and casting. The reliability is illustrated that the proposed technique is more stable and robust than the conventional system. This study is concerned with an analytical methodology of kinematic computation for 7 DOF manipulators for optimization of forging manufacturing process.

Development of a New Multi-Fingered Robot Hand Using Ultrasonic Motors and Its Control System (초음파 모터를 이용한 다지 로봇 손 및 제어시스템 개발)

  • Kim, Byoung-Ho;Oh, Sang-Rok;You, Bum-Jae;Suh, Il-Hong;Choi, Hyouk-Ryeol
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.6 no.4
    • /
    • pp.327-332
    • /
    • 2000
  • In this paper, a new multi-fingered robot hand using ultrasonic motors and its control system are developed. The developed robot hand has four fingers and fifteen articulated joints. The distal joint of each finger is directly driven by ultrasonic motor and all joints except the distal joint has low transmission gear mechanism with the motor. The developed robot hand has several advantages in size compared to a hand using conventional DC motors, and in performance compared to a hand using tendons to drive joints. A VME-bus based hand control system and ultrasonic motor driver are also developed. The performance of the hand is confirmed by using the developed control system in real-time.

  • PDF