DOI QR코드

DOI QR Code

A Study on Design and Durability Analysis of Vertical Multi-Jointed Robot with Translational Joint to adapt in the High Temperature Environment

고온 환경에서 적용 가능한 병진관절을 갖는 수직 다관절 로봇시스템 개발 및 내구성 분석에 관한 연구

  • Received : 2019.03.27
  • Accepted : 2019.05.29
  • Published : 2019.06.30

Abstract

We Proposed a new technology to develop vertical type multi-joint robot system enable to adapt in high temperature environment. The main contents is a new approach to design a vertical type articulated robot with prismatic joint and analysis of thermal for process automation of casting and forging. The proposed robot is suitable to use handling working parts of casting and forging. for the manufacturing process of forging and casting. The reliability is illustrated that the proposed technique is more stable and robust than the conventional system. This study is concerned with an analytical methodology of kinematic computation for 7 DOF manipulators for optimization of forging manufacturing process.

Keywords

SOOOB6_2019_v22n3_337_f0001.png 이미지

Fig. 1 Kinematic analysis of robot manipulator

SOOOB6_2019_v22n3_337_f0002.png 이미지

Fig. 2 6-Axis vertical multi-joint robot

SOOOB6_2019_v22n3_337_f0003.png 이미지

Fig. 3 6-axis vertical articulated robot link coordinate system

SOOOB6_2019_v22n3_337_f0004.png 이미지

Fig. 4 Shape and structure of 6-axis vertical articulated robot (3D modeling)

SOOOB6_2019_v22n3_337_f0005.png 이미지

Fig. 5 Structure and specification of each link

SOOOB6_2019_v22n3_337_f0006.png 이미지

Fig. 6 Structural analysis results of 6-axis vertical articulated robot

SOOOB6_2019_v22n3_337_f0007.png 이미지

Fig. 7 Results of thermal analysis of vertical articulated robot (50C)

SOOOB6_2019_v22n3_337_f0008.png 이미지

Fig. 8 Analysis of Thermal Deformation of Vertical Multi-Joint Robot (50C)

SOOOB6_2019_v22n3_337_f0009.png 이미지

Fig. 9 Heat Resistant Robot Joint (7 axis) Integrated System 3D Modeling

SOOOB6_2019_v22n3_337_f0010.png 이미지

Fig. 10 Structural analysis results of mobile translational joint(7 axis) transport

SOOOB6_2019_v22n3_337_f0011.png 이미지

Fig. 11 The structure of robot gripper system

SOOOB6_2019_v22n3_337_f0012.png 이미지

Fig. 12 Position selection of thermal stress analysis on Gripper Position PA

SOOOB6_2019_v22n3_337_f0013.png 이미지

Fig. 13 Thermal stress analysis of point PA

SOOOB6_2019_v22n3_337_f0014.png 이미지

Fig. 14 Structural and Thermal Stress and Deformation Analysis Points of Movable Jointed (7 Axis) Transfer Rails (8point)

SOOOB6_2019_v22n3_337_f0015.png 이미지

Fig. 15 Thermal Stress Analysis of Transverse Joint (7-Axis) Transfer Frame

SOOOB6_2019_v22n3_337_f0016.png 이미지

Fig. 16 Speed according to the load pattern of driving motor

SOOOB6_2019_v22n3_337_f0017.png 이미지

Fig. 17 3D modeling of robot system

SOOOB6_2019_v22n3_337_f0018.png 이미지

Fig. 18 The developed robot system prototype

Table 1. Materials and Properties

SOOOB6_2019_v22n3_337_t0001.png 이미지

Table 2. Size of load

SOOOB6_2019_v22n3_337_t0002.png 이미지

Table 3. Structural analysis result table of each link

SOOOB6_2019_v22n3_337_t0003.png 이미지

Table 4. Materials and Properties

SOOOB6_2019_v22n3_337_t0004.png 이미지

Table 5. Structural Analysis of Movable Joints

SOOOB6_2019_v22n3_337_t0005.png 이미지

Table 6. Type of material

SOOOB6_2019_v22n3_337_t0006.png 이미지

Table 7. Gripper material and characteriics

SOOOB6_2019_v22n3_337_t0007.png 이미지

Table 8. Gripper heat durability analysis result

SOOOB6_2019_v22n3_337_t0008.png 이미지

Table 9. Thermal stress analysis result of moving frame (7 Axis)

SOOOB6_2019_v22n3_337_t0009.png 이미지

Table 10. Thermal Stress of Movable Joint Transfer Rails Analysis result analysis data

SOOOB6_2019_v22n3_337_t0010.png 이미지

Table 11. Dynamic characteristics and stability analysis results of driving actuator

SOOOB6_2019_v22n3_337_t0011.png 이미지

Table 12. The Final Actuation Requirements for the Actuator of a Movable Type Jointed Articulated Multi-Jointed Robot

SOOOB6_2019_v22n3_337_t0012.png 이미지

Table 13. Dynamic Characteristics of Driving Actuator of Movable Joint

SOOOB6_2019_v22n3_337_t0013.png 이미지

References

  1. G. C. Burdea, Invited review: "The Synergy between Virtual Reality and Robotics," IEEE Trans. Robotics and Automation, Vol. 15, no. 3, pp. 400-410, 1999. https://doi.org/10.1109/70.768174
  2. Markhlin, "Robot Control and Inspection by Multiple Camera Vision", 11th ISIR, pp.121-128, 1981.
  3. Hitachi, "Vision System of an Automatic Inserter for PCB Assembly," Proc. of the 2nd International Conf, pp.63-72, Nov. 1982.
  4. Sung Hyun Han, Man Hyung Lee and Hideki Hashimoto, "Image-Based Servoing Control of a SCARA Robot," KSME International Journal, Vol. 14, No. 7, pp
  5. Bart Kosko, "Neural Networks for signal processing", Prentice-Hall International, Inc., New Jersey, 1992.
  6. B. Espiau, "Sensor and Sensory Systems for Advanced Robots; An Overview of Local Environment Sensing in Robotics Application". Spiager Verlog, pp. 125-151, 1988.
  7. N. Hogan, "Stable Execution of Contact Tasks Using Impedance Control," Proc. IEEE Int. Conf. Robotics and Automation. pp. 595-601, Raleigh NC, March, 1987.
  8. Sung Hyun Han, Man Hyung Lee and Hideki Hashimoto, "Image-Based Servoing Control of a SCARA Robot," KSME International Journal, Vol. 14, No. 7, pp. 782-788, 2000. https://doi.org/10.1007/BF03184464
  9. Sung Hyun Han, Man Hyung Lee and Hideki Hashimoto, "Image-Based Servoing Control of a SCARA Robot," KSME International Journal, Vol. 14, No. 7, pp. 782-788, 2000. https://doi.org/10.1007/BF03184464
  10. K. Hashimoto, T. Ebine and K. Kimura, "Visual Servoing with Hand-Eye Manipulator-Optimal Control Approach," IEEE Trans. on Robotics and Automation, vol. 12, no. 5, pp. 766-774, 1996 https://doi.org/10.1109/70.538981
  11. G. C. Burdea,Invited review: "The Synergy between Virtual Reality and Robotics," IEEE Trans. Robotics and Automation, vol. 15, no. 3, pp. 400-410, 1999. https://doi.org/10.1109/70.768174
  12. B. D. Etter and M, R, Duck, "Automated Grasping Aided by Optoelectronic Sensor", IEEE Journal on Robotics and Automation, Feb. 1990.
  13. 김두범, 김기복, 김치원, 한성현, "직접분사식 디젤기관의 연소 및 배기에 관한연구",한국산업융합학회 논문집 제 20권 제 2호 pp.105-114, 2017. https://doi.org/10.21289/KSIC.2017.20.2.105
  14. 진철규, "난성형 T형상 알루미늄 부품의 성형공정 해석 및 실험", 한국산업융합학회 논문집 제 20권 제 2호 pp.141-148 2017. https://doi.org/10.21289/KSIC.2017.20.2.141
  15. 김성원, 이문희, 황승국, 이상필, "액상소결을 이용한 탄소코팅 SiCf/SiC복합재료의 파괴특성",한국산업융합학회 논문집 제 20권 제 2호 pp.149-156 2017. https://doi.org/10.21289/KSIC.2017.20.2.149
  16. 류혜연, 정기민, 김만호, 이경창, "전기 자동차용 Brake-By-Wire 시스템을 위한 전자식 브레이크 구현",한국산업융합학회 논문집 제 20권 제 4호 pp.313-324 2017. https://doi.org/10.21289/KSIC.2017.20.4.313
  17. Ju Kyoung Lee, Kyung Chang Lee, Hyun Hee Kim. "Development of Direct Printed Flexible Tactile Sensors",한국산업융합학회 논문집 제20권 제 3호 pp,233-244 https://doi.org/10.21289/KSIC.2017.20.3.233
  18. 고영호, 김현희, 이경창, "홀 센서 기반 전자식 엔진냉각제어 시스템 설계",한국산업융합학회 논문집 제 20권 제 4호 pp.325-332 2017 https://doi.org/10.21289/KSIC.2017.20.4.325
  19. 고석조, 김태훈, 차병수, 박민규, 문영근, 유기호, "24 GHz 안테나 모듈을 이용한 2차원 레이더 거리 측정시스템 개발 및 성능 평가",한국산업융합학회 논문집 제 19권 제 2호 pp.62-68 https://doi.org/10.21289/KSIC.2016.19.2.062
  20. 이형묵, 양지훈, 이정환, 박성미, 박성준, "소프트 절환이 가능한 계통 연계형 CTTS 시스템 구성에 관한 연구",한국산업융합학회 논문집 제 21권 제 6호 pp.361-368 https://doi.org/10.21289/KSIC.2018.21.6.361
  21. 진태석, "천장 전등패널 기반 로봇의 주행오차 보정과 제어",한국산업융합학회 논문집 제 20권 제 2호 pp.89-95 https://doi.org/10.21289/KSIC.2017.20.2.089
  22. MoonHee Lee, SungWon Kim, JongHo Lee, SeungKuk Hwang, SangPill Lee, Kenjiro Sugio, Gen Sasak, "Evaluation of Carbon Fiber distribution in Unidirectional CF/Al Composites by Two-Dimensional Spatial Distribution Method",한국산업융합학회 논문집 제 21권 제 1호 pp.29-36. https://doi.org/10.21289/KSIC.2018.21.1.029