• Title/Summary/Keyword: Multi-Format Video Decoder

Search Result 6, Processing Time 0.019 seconds

A Programmable Multi-Format Video Decoder (프로그래머블 멀티 포맷 비디오 디코더)

  • Kim, Jaehyun;Park, Goo-man
    • Journal of Broadcast Engineering
    • /
    • v.20 no.6
    • /
    • pp.963-966
    • /
    • 2015
  • This paper introduces a programmable multi-format video decoder(MFD) to support HEVC(High Efficiency Video Coding) standard and for other video coding standards. The goal of the proposed MFD is the high-end FHD(Full High Definition) video decoder needed for a DTV(Digital Tele-Vision) SoC(System on Chip). The proposed platform consists of a hybrid architecture that is comprised of reconfigurable processors and flexible hardware accelerators to support the massive computational load and various kinds of video coding standards. The experimental results show that the proposed architecture is operating at a 300MHz clock that is capable of decoding HEVC bit-stream of FHD 30 frames per second.

Analysis of Components Performance for Programmable Video Decoder (프로그래머블 비디오 복호화기를 위한 구성요소의 성능 분석)

  • Kim, Jaehyun;Park, Gooman
    • Journal of Broadcast Engineering
    • /
    • v.24 no.1
    • /
    • pp.182-185
    • /
    • 2019
  • This paper analyzes performances of modules in implementing a programmable multi-format video decoder. The goal of the proposed platform is the high-end Full High Definition (FHD) video decoder. The proposed multi-format video decoder consists of a reconfigurable processor, dedicated bit-stream co-processor, memory controller, cache for motion compensation, and flexible hardware accelerators. The experiments suggest performance baseline of modules for the proposed architecture operating at 300 MHz clock with capability of decoding HEVC bit-streams of FHD 30 frames per second.

SRP Based Programmable FHD HEVC Decoder (SRP 기반 FHD HEVC Decoder)

  • Song, Joon Ho;Lee, Sang-jo;Lee, Won Chang;Kim, Doo Hyun;Kim, Jae Hyun;Lee, Shihwa
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2014.06a
    • /
    • pp.160-162
    • /
    • 2014
  • A programmable video decoding system with multi-core DSP and co-processors is presented. This system is adopted by Digital TV SoC (System on Chip) and is used for FHD HEVC (High Efficiency Video Coding) decoder. Using the DSP based programmable solution, we can reduce commercialization period by one year because we can parallelize algorithm development, software optimization and hardware design. In addition to the HEVC decoding, the proposed system can be used for other application such as other video decoding standard for multi-format decoder or video quality enhancement.

  • PDF

A Detachable Full-HD Multi-Format Video Decoder: MPEG-2/MPEG-4/H.264, and VC-1 (분리형 구조의 고화질 멀티 포맷 비디오 복호기: MPEG-2/MPEG-4/H.264와 VC-1)

  • Bae, Jong-Woo;Cho, Jin-Soo
    • The KIPS Transactions:PartA
    • /
    • v.15A no.1
    • /
    • pp.61-68
    • /
    • 2008
  • In this paper, we propose the VLSI design of Multi-Format Video Decoder (MFD) to support video codec standards such as MPEG-2, MPEG-4, H.264 and VC-1. The target of the proposed MFD is the Full HD (High Definition) video processing needed for the high-end D-TV SoC (System-on-Chip). The size of the design is reduced by sharing the common large-size resources such as the RISC processor and the on-chip memory among the different codecs. In addition, a detachable architecture is introduced in order to easily add or remove the codecs. The detachable architecture preserves the stability of the previously designed and verified codecs. The size of the design is about 2.4 M gates and the operating clock frequency is 225MHz in the Samsung 65nm process. The proposed MFD supports more than Full-HD (1080p@30fps) video decoding, and the largest number of video codec standards known so far.

A study on the implementation of a digital video/audio system to support multi-audio format (다양한 오디오 포맷을 지원하는 비디오/오디오 시스템 구현에 관한 연구)

  • Park In-Gyu
    • Journal of the Institute of Electronics Engineers of Korea CI
    • /
    • v.43 no.4 s.310
    • /
    • pp.123-132
    • /
    • 2006
  • In this paper, the digital video and audio system is improved so that various digital video data formats in DVD disc, and digital audio data formats through the S/PDIF ports may be decoded. It is not easy to implement all decoding functions of video and audio by a DVD processor. The special structure in audio decoding circuit is proposed in this system so as to have simultaneously almost same video and audio performance in quality. By dividing the decoding circuit separately into video and audio part, the audio quality can be dramatically improved together with supporting several audio formats and with several effects. In order to satisfy the perfect audio system to support to audio decoding formats, it is just enough to get the expensive, complicated decoder. However, it may be not easy to get this expensive decoder in near future. Therefore it is rather to adopt the downloading method by which the host should download the appropriate code into memory by detecting the corresponding audio bit streams. It is proved that this method may be efficient in the point of sharing resource of audio data for video decoding.

Design and Optimization of Mu1ti-codec Video Decoder using ASIP (ASIP를 이용한 다중 비디오 복호화기 설계 및 최적화)

  • Ahn, Yong-Jo;Kang, Dae-Beom;Jo, Hyun-Ho;Ji, Bong-Il;Sim, Dong-Gyu;Eum, Nak-Woong
    • Journal of the Institute of Electronics Engineers of Korea CI
    • /
    • v.48 no.1
    • /
    • pp.116-126
    • /
    • 2011
  • In this paper, we present a multi-media processor which can decode multiple-format video standards. The designed processor is evaluated with optimized MPEG-2, MPEG-4, and AVS (Audio video standard). There are two approaches for developing of real-time video decoders. First, hardware-based system is much superior to a processor-based one in execution time. However, it takes long time to implement and modify hardware systems. On the contrary, the software-based video codecs can be easily implemented and flexible, however, their performance is not so good for real-time applications. In this paper, in order to exploit benefits related to two approaches, we designed a processor called ASIP(Application specific instruction-set processor) for video decoding. In our work, we extracted eight common modules from various video decoders, and added several multimedia instructions to the processor. The developed processor for video decoders is evaluated with the Synopsys platform simulator and a FPGA board. In our experiment, we can achieve about 37% time saving in total decoding time.