• Title/Summary/Keyword: Multi-Axial Stress

Search Result 87, Processing Time 0.027 seconds

Production Mechanism of Residual Stress Generated by Multi-Pass Welding of the steel Pipe (강관 적층용접부 잔류응력의 생성기구)

  • Chang, Kyong Ho;Yang, Sung Chul;Kang, Jae Hoon
    • Journal of Korean Society of Steel Construction
    • /
    • v.13 no.4
    • /
    • pp.327-335
    • /
    • 2001
  • The characteristics and production mechanism of residual stress generated by multi-pass welding of the steel pipe were elucidated from the results of three-dimensional thermal elastic-plastic FEM analysis. When the steel pipe was jointed by multi-pass welding, the stress components of circumferential direction and radial direction near welded joints on the inner surface and the outer surface of the pope were tensile. The stress component of axial direction on the inner surface was tensile and on the outer surface was compressive. On the other hands, the production mechanism of residual stress generated by multi-pass welding of the steel pipe was investigated. Residual stress generated by welding of the steel pipe was investigated not only by the thermal history but also by geometrical shape. Then, the generality of the production mechanism of residual stress generated by multi-pass welding was confirmed.

  • PDF

Numerical Optimization of a Transonic Axial Compressor with Casing Grooves for Improvement of Operating Stability (케이싱 그루브가 장착된 천음속 축류압축기의 작동 안정성 향상을 위한 수치최적화)

  • Kim, Jin-Hyuk;Choi, Kwang-Jin;Kim, Kwang-Yong
    • The KSFM Journal of Fluid Machinery
    • /
    • v.14 no.5
    • /
    • pp.31-38
    • /
    • 2011
  • Optimization using a hybrid multi-objective evolutionary algorithm coupled with response surface approximation has been performed to improve the performance of a transonic axial compressor with circumferential casing grooves. In order to optimize the operating stability and peak adiabatic efficiency of the compressor with circumferential casing grooves, tip clearance, angle distribution at blade tip and the depth of the circumferential casing grooves are selected as design variables. Three-dimensional Reynolds-averaged Navier-Stokes equations with the shear stress transport turbulence model are discretized by finite volume approximations. The trade-off between two objectives with the interaction of blade and casing treatment is determined and discussed with respect to the representative clusters in the Pareto-optimal solutions compared to the axial compressor without the casing treatment.

Structural design method of the steel brush type loading platen adopted in multi-axial compression experiments (다축압축 실험에 적용되는 철제 빗살구조 재하판의 구조 설계 기법)

  • SaGong, Myung;Lee, Jun-S.;Kim, Sung-Soo
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.9 no.4
    • /
    • pp.351-359
    • /
    • 2007
  • Multi-axial compression tests have been frequently conducted to evaluate the in situ properties of rock masses and the mechanical behaviors of rock strata through the model tests. Without the proper boundary condition for the model tests, the mechanical behavior of rock mass would deviate, as can be expected, from the in situ conditions. The boundary condition will affect the internal stress distribution of the specimens and cause some distortion on the measurement. In this study, a design process regarding the steel brush, which has been employed for multi-axial compression test to reduce the frictional restraint along the specimen/loading platen interface, is introduced. The individual brushes are regarded as a simple column and beam to calculate the cross-sectional size and length of the brushes in consideration of the buckling capacity and the allowable deflection.

  • PDF

Approximate Multi-Objective Optimization of Scroll Compressor Lower Frame Considering the Axial Load (축하중을 고려한 스크롤 압축기 하부 프레임의 최적설계)

  • Kim, JungHwan;Lee, Jongsoo
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.24 no.3
    • /
    • pp.308-313
    • /
    • 2015
  • In this research, a multi-objective optimal design of a scroll compressor lower frame was approximated, and the design parameters of the lower frame were selected. The sensitivity of the design parameters was induced through a parameter analysis, and the thickness was determined to be the most sensitive parameter to stress and deflection. All of the design parameters regarding the mass are sensitive factors. It was formulated for the problem about stress and deflection to be caused by the axial load. The sensitivity of the design variables was determined using an orthogonal array for the parameter analysis. Using the central composite and D-optimal designs, a second polynomial approximation of the objective and constraint functions was formulated and the accuracy was verified through an R-square. These functions were applied to the optimal design program (NSGA-II). Through a CAE analysis, the effectiveness of the central composite and D-optimal designs was determined.

Buckling behavior of rectangular plates under uniaxial and biaxial compression

  • Bourada, Mohamed;Bouadi, Abed;Bousahla, Abdelmoumen Anis;Senouci, Amel;Bourada, Fouad;Tounsi, Abdelouahed;Mahmoud, S.R.
    • Structural Engineering and Mechanics
    • /
    • v.70 no.1
    • /
    • pp.113-123
    • /
    • 2019
  • In the classical stability investigation of rectangular plates the classical thin plate theory (CPT) is often employed, so omitting the transverse shear deformation effect. It seems quite clear that this procedure is not totally appropriate for the investigation of moderately thick plates, so that in the following the first shear deformation theory proposed by Meksi et al. (2015), that permits to consider the transverse shear deformation influences, is used for the stability investigation of simply supported isotropic rectangular plates subjected to uni-axial and bi-axial compression loading. The obtained results are compared with those of CPT and, for rectangular plates under uniaxial compression, a novel direct formula, similar to the conventional Bryan's expression, is found for the Euler stability stress. The accuracy of the present model is also ascertained by comparing it, with model proposed by Piscopo (2010).

Profile-shifted Gears in Multi-axial Differential System (다축차동장치의 전위기어 해석)

  • Kang, Dong-Soo;Song, Chul-Ki
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.28 no.5
    • /
    • pp.632-637
    • /
    • 2011
  • A new tooth profile which is adjusted on the amount of addendum modification factor is proposed for reducing vibration and noise of gears. The transmission error of the new profile can be designed more uniformly than that of the standard involute profile. The basic concepts of tooth profile modification are to reduce the load in contact area and to find the appropriate profile modification factor for operation condition. In this study, gears were estimated to constructive safety of bending strength and contact strength durability by using ROMAX program, and were compared with results by design formula of AGMA standard.

FATIGUE DAMAGE PARAMETER OF SPOT WELDED JOINTS UNDER PROPORTIONAL LOADING

  • KANG H. T.
    • International Journal of Automotive Technology
    • /
    • v.6 no.3
    • /
    • pp.285-291
    • /
    • 2005
  • In this paper, the author proposes a fatigue damage parameter of spot welded joints under proportional loading. The proposed fatigue damage parameter is developed based on von Mises' equivalent stress and local structural stress at the edge of spot weld nugget. The structural stress at the edges of the weld nugget in each sheet is calculated using the forces and moments that are determined by finite element analysis. A structural equivalent stress is then calculated by von Mises' equivalent stress equation. The structural equivalent stresses are correlated to experimental fatigue life of the spot welded joints. The proposed parameter is evaluated with fatigue test data of spot welds subjected to multi axial and tensile-shear loads. Sheppard's parameter and Rupp and co-workers' parameter are also evaluated with the same test data to compare with the author's parameter. This proposed parameter presents a better correlation with experimental fatigue data than those of Sheppard's and Rupp and co-workers' parameter. The proposed parameter should be very effective for durability calculations during the early design phase since coarsely meshed finite element models can be employed.

Yielding behavior and yield strength of plate structure containing softened region (연화부를 포함한 판재의 항복거동과 항복강도)

  • 배강열;김희진;이태열;엄동석
    • Journal of Welding and Joining
    • /
    • v.8 no.3
    • /
    • pp.79-88
    • /
    • 1990
  • Welded joint often contains soft or softened regions such as the HAZ of TMCP steel welded with high heat input. In this study, the equivalent yield strength of plate structure containing softened region was predicted by FEM analysis, and its incremental behavior was explained with the results of the analysis. The calculated results of yield strength indicated the following for the plate structures. 1) As the softened region starts to yield, shear stress begins to build up along the boundary between base metal and softened region. This results in multi-axial stress condition which gives restraint on the softened region. 2) Restraint effect has a significant influence on the distribution of the shear stress, the nominal stress, and the strain. 3) The yielding behavior of softened region becomes the same as that of base metal when both ratios of length to width and thickness to width of softened region are larger than 30 and 13 respectively.

  • PDF

Stress Analysis of the GEO-KOMPSAT-2 Tubing System (정지궤도복합위성 추진계 배관망 구조해석)

  • Jeong, Gyu;Lim, Jae Hyuk;Chae, Jongwon;Jeon, Hyung-Yoll
    • Journal of Aerospace System Engineering
    • /
    • v.12 no.1
    • /
    • pp.47-56
    • /
    • 2018
  • In this paper, the structural analysis of the Geostationary Korea Multi-Purpose Satellite-2 (GEO-KOMPSAT-2) tubing system is discussed, and the structural integrity of the tubing system is assessed by comparative analysis with the results of overseas partner AIRBUS. Securing structural reliability of the tubing system is a very important key element of the propulsion system of the GEO-KOMPSAT-2 satellite. Therefore, FE modeling of the propulsion tubing was carried out directly using the CAE program, and structural analysis was performed to evaluate the stress state under launch conditions. Hoop stress, axial stress, bending stress, and torsion stress were calculated according to diverse load conditions by using pressure stress analysis, thruster alignment analysis, sine qualification load analysis, and random qualification load analysis. From the results, the Margin of Safety (MoS) of the tubing system is evaluated, and we can verify the structural integrity of the tubing system when subjected to various launch loads.