• Title/Summary/Keyword: Multi core

Search Result 1,190, Processing Time 0.032 seconds

An advanced study of multi-stage type hydrocyclone dust collector for fish egg collecting using Visualization (가시화기법을 이용한 다단형 하이드로 사이클론 어란 (魚卵) 집진장치의 개선에 관한 연구)

  • CHOI, Eunhee;PYEON, Yongbeom;LEE, Seung-heon;LEE, Kyounghoon
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.53 no.4
    • /
    • pp.404-412
    • /
    • 2017
  • A centrifugal cyclone dust collecting apparatus includes a hydro cyclone dust collecting apparatus for separating solid or liquid using liquid or suspension as a medium. In this study, the formation mechanism and improvement of air core and inner air layer were confirmed through Particle Image Velocimetry. These results showed that the modified experimental model was designed in the conventional method suitable for the separation of juvenile fish and eggs. The inlet speed of the multi-stage hydrocyclone dust collector, which can increase the inlet velocity and minimize floatage in the turbulence chamber, was increased from 0.15 to 0.30 m/s. As a result, the air core was stably formed, the inner air layer was increased with increasing speed. In addition, the dust collecting efficiency of egg and juvenile fish was 97.8% on average, It can infer that this system confirmed the ability to efficiently collect particles of $40{\mu}m$ or more.

Generalized Nyquist Criterion for the Stability of Xenon Oscillation (일반화된 Nyquist 요건에 의한 제논진동의 안전성 분석)

  • Park, You-Cho;Park, Goon-Cherl;Chung, Chang-Hyun;Park, Chong-Kyun
    • Nuclear Engineering and Technology
    • /
    • v.22 no.4
    • /
    • pp.371-379
    • /
    • 1990
  • The Xenon spatial oscillation may give rise to operational difficulties in a nuclear power plant. In this study, in order to investigate the Xenon instability for a PWR, the frequency-domain technique is adopted by using Generalized Nyquist Criterion, which is more general and suitable for the multi-input/multi-output system. Also linearized modal fluxes are obtained by a modal expansion. This model has been implemented to test the axial Xenon stability of YGN-1 unit against the changes in plant operating parameters ; power level, control rod position, and core average burnup. The results show that the increase of power level and the deeper insertion of control rod have the destabilizing effect, and that the burnup progress makes the core less stable. Also the results show that the overestimation due to modal interaction was found not to be significant.

  • PDF

A Study of High Performance WebKit Mobile Web Browser (WebKit 모바일 웹 브라우저의 성능 향상을 위한 기법 연구)

  • Kim, Cheong-Ghil
    • Journal of Satellite, Information and Communications
    • /
    • v.7 no.1
    • /
    • pp.48-52
    • /
    • 2012
  • As the growing popularity of smartphones, mobile web browsing has become one of the most important and popular applications in mobile devices. Furthermore, it is clear that the demand for PC-like full browser performance on mobile devices is increasing greatly. WebKit is an open source web browser engine adopted by Google Android. This paper proposed a technique of increasing the performance of WebKit by paralleling its libraries. This method was applied to JPEG library and the performance evaluation was conducted in PC environment. The results was used to estimate the performance prediction on multi-core mobile embedded architecture and to show the feasibility of the proposed method to estimate the performance gain on heterogeneous multi-core embedded architecture.

Vibration analysis of double-bonded micro sandwich cylindrical shells under multi-physical loadings

  • Yazdani, Raziye;Mohammadimehr, Mehdi;Zenkour, Ashraf M.
    • Steel and Composite Structures
    • /
    • v.33 no.1
    • /
    • pp.93-109
    • /
    • 2019
  • In the present study, vibration analysis of double bonded micro sandwich cylindrical shells with saturated porous core and carbon/boron nitride nanotubes (CNT/BNNT) reinforced composite face sheets under multi-physical loadings based on Cooper-Naghdi theory is investigated. The material properties of the micro structure are assumed to be temperature dependent, and each of the micro-tubes is placed on the Pasternak elastic foundations, and mechanical, moisture, thermal, electrical, and magnetic forces are effective on the structural behavior. The distributions of porous materials in three distributions such as non-linear non-symmetric, nonlinear-symmetric, and uniform are considered. The relationship including electro-magneto-hydro-thermo-mechanical loadings based on modified couple stress theory is obtained and moreover the governing equations of motion using the energy method and the Hamilton's principle are derived. Also, Navier's type solution is also used to solve the governing equations of motion. The effects of various parameters such as material length scale parameter, temperature change, various distributions of nanotube, volume fraction of nanotubes, porosity and Skempton coefficients, and geometric parameters on the natural frequency of double bonded micro sandwich cylindrical shells are investigated. Increasing the porosity and the Skempton coefficients of the core in micro sandwich cylindrical shell lead to increase the natural frequency of the structure. Cylindrical shells and porous materials in the industry of filters and separators, heat exchangers and coolers are widely used and are generally accepted today.

FUNDAMENTALS AND RECENT DEVELOPMENTS OF REACTOR PHYSICS METHODS

  • CHO NAM ZIN
    • Nuclear Engineering and Technology
    • /
    • v.37 no.1
    • /
    • pp.25-78
    • /
    • 2005
  • As a key and core knowledge for the design of various types of nuclear reactors, the discipline of reactor physics has been advanced continually in the past six decades and has led to a very sophisticated fabric of analysis methods and computer codes in use today. Notwithstanding, the discipline faces interesting challenges from next-generation nuclear reactors and innovative new fuel designs in the coming. After presenting a brief overview of important tasks and steps involved in the nuclear design and analysis of a reactor, this article focuses on the currently-used design and analysis methods, issues and limitations, and current activities to resolve them as follows: (1) Derivation of the multi group transport equations and the multi group diffusion equations, with representative solution methods thereof. (2) Elements of modem (now almost three decades old) diffusion nodal methods. (3) Limitations of nodal methods such as transverse integration, flux reconstruction, and analysis of UO2-MOX mixed cores. Homogenization and related issues. (4) Description of the analytic function expansion nodal (AFEN) method. (5) Ongoing efforts for three-dimensional whole-core heterogeneous transport calculations and acceleration methods. (6) Elements of spatial kinetics calculation methods and coupled neutronics and thermal-hydraulics transient analysis. (7) Identification of future research and development areas in advanced reactors and Generation-IV reactors, in particular, in very high temperature gas reactor (VHTR) cores.

Numerical simulation on jet breakup in the fuel-coolant interaction using smoothed particle hydrodynamics

  • Choi, Hae Yoon;Chae, Hoon;Kim, Eung Soo
    • Nuclear Engineering and Technology
    • /
    • v.53 no.10
    • /
    • pp.3264-3274
    • /
    • 2021
  • In a severe accident of light water reactor (LWR), molten core material (corium) can be released into the wet cavity, and a fuel-coolant interaction (FCI) can occur. The molten jet with high speed is broken and fragmented into small debris, which may cause a steam explosion or a molten core concrete interaction (MCCI). Since the premixing stage where the jet breakup occurs has a large impact on the severe accident progression, the understanding and evaluation of the jet breakup phenomenon are highly important. Therefore, in this study, the jet breakup simulations were performed using the Smoothed Particle Hydrodynamics (SPH) method which is a particle-based Lagrangian numerical method. For the multi-fluid system, the normalized density approach and improved surface tension model (CSF) were applied to the in-house SPH code (single GPU-based SOPHIA code) to improve the calculation accuracy at the interface of fluids. The jet breakup simulations were conducted in two cases: (1) jet breakup without structures, and (2) jet breakup with structures (control rod guide tubes). The penetration depth of the jet and jet breakup length were compared with those of the reference experiments, and these SPH simulation results are qualitatively and quantitatively consistent with the experiments.

Joining of Multi Nodes of a Titanium Bicycle by the Superplastic Hydroforming and Diffusion Bonding Technology (티타늄 자전거의 다중 조인트 접합을 위한 초소성 하이드로포밍과 확산 접합 기술)

  • Yoo, Y.H.;Lee, S.Y.
    • Transactions of Materials Processing
    • /
    • v.28 no.1
    • /
    • pp.15-20
    • /
    • 2019
  • The superplastic forming/diffusion bonding process has been developed to fabricate a core frame structure with joint nodes out of tubes, for the development of a titanium high performance bicycle. The hydroforming process has been applied for bulging of a tube in the superplastic condition before, and during the diffusion bonding process. In this experiment, a commercial Ti-3Al-2.5V tube was selected as raw material for the study. The forming experiment has been performed using a servo-hydraulic press with a capacity of 200 ton. Next, nitrogen gas was used to acquire necessary pressure for the bulging and bonding of the tubes to fabricate the joint nodes. The pertinent processing temperature was $870^{\circ}C$ for the superplastic hydroforming/diffusion bonding (SHF/DB) process, using the Ti-3Al-2.5V tube. The bonding quality and the progress of bulging and diffusion bonding have been observed by the investigation of the joining interfaces at the cross section of the joint structure. The control of the nitrogen pressure throughout the SHF/DB process, was an important factor to avoid any significant defects in the joint structure. The whole progress stage of the diffusion bonding could be observed at a joint interface. A core structure with 5 joint nodes to manufacture a titanium bicycle could be obtained in a SHF/DB process.

Identification Of Jet Components Of CTA 102 On Milliarcsecond Scales Using The iMOGABA Program

  • Kim, Sang-Hyun;Lee, Sang-Sung;Hodgson, Jeffrey A.;Lee, Jee Won;Kang, Sincheol;Yoo, Sung-Min
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.44 no.1
    • /
    • pp.76.1-76.1
    • /
    • 2019
  • CTA 102, one of gamma-ray bright active galactic nuclei (AGN) has been observed with Korean very long baseline interferometry (VLBI) network (KVN) during the period of 2012 December-2018 May as part of interferometric Monitoring Of Gamma-ray Bright AGN (iMOGABA). Multi-frequency VLBI observations enable us to compare the milliarcsecond(mas)-scale iMOGABA images of relativistic jets with those from the Monitoring Of Jets in AGN with Very long baseline array (VLBA) Experiments (MOJAVE) and the VLBA-Boston University(BU)-BLAZAR programs which use VLBA with its angular resolutions of 0.2-1.3 mas. In spite of the relative larger beam sizes of KVN (1-10 mas), we are able to identify jet components of CTA 102 using the KVN multi-frequency VLBI observations with those resolved with VLBA. Considering an instrumental beam blending effect on the jet component identification, we were able to obtain a blending shift of the core position based on a convolution analysis using the VLBA data. When we apply the core position shift to the KVN images of CTA 102, we find that the identified jet components of CTA 102 from the KVN observations are well matched with those from the VLBA observations. Based on the results of the analysis, we may be able to study the jet kinematics and its correlation with gamma-ray flare activity.

  • PDF

Bending and buckling of porous multidirectional functionality graded sandwich plate

  • Lazreg, Hadji;Fabrice, Bernard;Royal, Madan;Ali, Alnujaie;Mofareh Hassan, Ghazwani
    • Structural Engineering and Mechanics
    • /
    • v.85 no.2
    • /
    • pp.233-246
    • /
    • 2023
  • Bending and buckling analysis of multi-directional porous functionally graded sandwich plate has been performed for two cases namely: FG skin with homogeneous core and FG core with homogeneous skin. The principle of virtual displacements was employed and the solution was obtained using Navier's technique. This theory imposes traction-free boundary conditions on the surfaces and does not require shear correction factors. The validation of the present study has been performed with those available in the literature. The composition of metal-ceramic-based FGM changes in longitudinal and transverse directions according to the power law. Different porosity laws, such as uniform distribution, unevenly and logarithmically uneven distributions were used to mimic the imperfections in the functionally graded material that were introduced during the fabrication process. Several sandwich plates schemes were studied based on the plate's symmetry and the thickness of each layer. The effects of grading parameters and porosity laws on the bending and buckling of sandwich plates were examined.

Feasibility Study on Cross-tie Systems in Nuclear Power Plants Using Multi-unit PSA (다수기 PSA를 활용한 원전 안전자원 공유 활용성 평가)

  • Jong Woo Park;Ho-Gon Lim;Jae Young Yoon
    • Journal of the Korean Society of Safety
    • /
    • v.38 no.3
    • /
    • pp.102-109
    • /
    • 2023
  • Following the accident at Fukushima, the true impact of multi-unit accidents came to light. Accordingly, research related to multi-unit accident effect analysis, risk evaluation, and accident prevention/prevention technology has been conducted. Specific examples are mobile/fixed equipment such as multi-barrier accident coping strategy (MACST) and diverse and flexible coping strategies (FLEX), which have been introduced and installed in multi-units for preventing and mitigating multi-unit accidents. These strategies are useful for enhancing the safety of nuclear power plants (NPPs); however, a more efficient strategy is required in terms of the costs of physical and human resources. To effectively and efficiently mitigate an increase in multi-unit accidents, it is necessary to not only to utilize mobile/fixed equipment but to also use crosstie options with resources that already exist at NPPs. Therefore, we analyzed the current international and domestic status of crosstie systems technology and propose a method to evaluate feasibility alongside risk based on a multi-unit probabilistic safety assessment (PSA). To analyze the international and domestic status of crosstie systems technology, actual cases and related research were studied, and a list of potential crosstie safety resources was derived. Additionally, a case study was performed on crosstie cases of two systems within the assumed six units on-site under a multi-unit accident, and a multi-unit PSA-based risk evaluation method is proposed.