• Title/Summary/Keyword: Multi Object Detection

Search Result 228, Processing Time 0.024 seconds

Development of Multi-channel Detector of X-ray Backscatter Imaging (후방산란 엑스선 영상획득을 위한 다채널 검출기 개발)

  • Lee, Jeonghee;Park, Jongwon;Choi, Yungchul;Lim, Chang Hwy;Lee, Sangheon;Park, Jaeheung
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2022.10a
    • /
    • pp.245-247
    • /
    • 2022
  • Backscattered x-ray imaging is a technology capable of acquiring an image inside an irradiated object by measuring X-rays scattered from an object. For image acquisition, the system must include an X-ray generator and a detection system for measuring scattered x-rays. The imaging device must acquire a real-time signal at sampling intervals for x-rays generated by passing through a high-speed rotating collimator, and for this purpose, a high-speed signal acquisition device is required. We developed a high-speed multi-channel signal acquisition device for converting and transmitting signals generated by the sensor unit composed of a large-area plastic scintillator and a photomultiplier tube. The developed detector is a system capable of acquiring signals at intervals of at least 15u seconds and converting and transmitting signals of up to 6 channels. And a system includes remote control functions such as high voltage, signal gain, and low level discrimination for individual calibration of each sensor. Currently, we are conducting an application test for image acquisition under various conditions.

  • PDF

Development of CCTV Cooperation Tracking System for Real-Time Crime Monitoring (실시간 범죄 모니터링을 위한 CCTV 협업 추적시스템 개발 연구)

  • Choi, Woo-Chul;Na, Joon-Yeop
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.12
    • /
    • pp.546-554
    • /
    • 2019
  • Typically, closed-circuit television (CCTV) monitoring is mainly used for post-processes (i.e. to provide evidence after an incident has occurred), but by using a streaming video feed, machine-based learning, and advanced image recognition techniques, current technology can be extended to respond to crimes or reports of missing persons in real time. The multi-CCTV cooperation technique developed in this study is a program model that delivers similarity information about a suspect (or moving object) extracted via CCTV at one location and sent to a monitoring agent to track the selected suspect or object when he, she, or it moves out of range to another CCTV camera. To improve the operating efficiency of local government CCTV control centers, we describe here the partial automation of a CCTV control system that currently relies upon monitoring by human agents. We envisage an integrated crime prevention service, which incorporates the cooperative CCTV network suggested in this study and that can easily be experienced by citizens in ways such as determining a precise individual location in real time and providing a crime prevention service linked to smartphones and/or crime prevention/safety information.

Training Performance Analysis of Semantic Segmentation Deep Learning Model by Progressive Combining Multi-modal Spatial Information Datasets (다중 공간정보 데이터의 점진적 조합에 의한 의미적 분류 딥러닝 모델 학습 성능 분석)

  • Lee, Dae-Geon;Shin, Young-Ha;Lee, Dong-Cheon
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.40 no.2
    • /
    • pp.91-108
    • /
    • 2022
  • In most cases, optical images have been used as training data of DL (Deep Learning) models for object detection, recognition, identification, classification, semantic segmentation, and instance segmentation. However, properties of 3D objects in the real-world could not be fully explored with 2D images. One of the major sources of the 3D geospatial information is DSM (Digital Surface Model). In this matter, characteristic information derived from DSM would be effective to analyze 3D terrain features. Especially, man-made objects such as buildings having geometrically unique shape could be described by geometric elements that are obtained from 3D geospatial data. The background and motivation of this paper were drawn from concept of the intrinsic image that is involved in high-level visual information processing. This paper aims to extract buildings after classifying terrain features by training DL model with DSM-derived information including slope, aspect, and SRI (Shaded Relief Image). The experiments were carried out using DSM and label dataset provided by ISPRS (International Society for Photogrammetry and Remote Sensing) for CNN-based SegNet model. In particular, experiments focus on combining multi-source information to improve training performance and synergistic effect of the DL model. The results demonstrate that buildings were effectively classified and extracted by the proposed approach.

A Feature Map Compression Method for Multi-resolution Feature Map with PCA-based Transformation (PCA 기반 변환을 통한 다해상도 피처 맵 압축 방법)

  • Park, Seungjin;Lee, Minhun;Choi, Hansol;Kim, Minsub;Oh, Seoung-Jun;Kim, Younhee;Do, Jihoon;Jeong, Se Yoon;Sim, Donggyu
    • Journal of Broadcast Engineering
    • /
    • v.27 no.1
    • /
    • pp.56-68
    • /
    • 2022
  • In this paper, we propose a compression method for multi-resolution feature maps for VCM. The proposed compression method removes the redundancy between the channels and resolution levels of the multi-resolution feature map through PCA-based transformation. According to each characteristic, the basis vectors and mean vector used for transformation, and the transformation coefficient obtained through the transformation are compressed using a VVC-based coder and DeepCABAC. In order to evaluate performance of the proposed method, the object detection performance was measured for the OpenImageV6 and COCO 2017 validation set, and the BD-rate of MPEG-VCM anchor and feature map compression anchor proposed in this paper was compared using bpp and mAP. As a result of the experiment, the proposed method shows a 25.71% BD-rate performance improvement compared to feature map compression anchor in OpenImageV6. Furthermore, for large objects of the COCO 2017 validation set, the BD-rate performance is improved by up to 43.72% compared to the MPEG-VCM anchor.

Video analysis using re-constructing of motion vectors on MPEG compressed domain (압축영역에서 움직임 벡터의 재추정을 이용한 비디오 해석 기법)

  • Kim, Nak-U;Kim, Tae-Yong;Gang, Eung-Gwan;Choe, Jong-Su
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.39 no.3
    • /
    • pp.78-87
    • /
    • 2002
  • A macroblock(MB) in MPEG coded domain can have zero, one, or two motion vectors depending on its frame type and prediction direction (forward-, backward-, or hi-directionally). In this paper, we propose a method that converts these motion vectors on MPEG coded domain as a uniform set, independent of the frame type and the direction of prediction, and directly utilizes these re-analyzed motion vectors for understanding video contents. Also, using this frame-type-independent motion vector, we propose novel methods for detecting and tracking moving objects with frame-based detection accuracy on the compressed domain. These algorithms are performed directly from the MPEG bitstreams after VLC decoding with little time consumption. Experimental results show validity and outstanding performance of our methods.

Deployment of Network Resources for Enhancement of Disaster Response Capabilities with Deep Learning and Augmented Reality (딥러닝 및 증강현실을 이용한 재난대응 역량 강화를 위한 네트워크 자원 확보 방안)

  • Shin, Younghwan;Yun, Jusik;Seo, Sunho;Chung, Jong-Moon
    • Journal of Internet Computing and Services
    • /
    • v.18 no.5
    • /
    • pp.69-77
    • /
    • 2017
  • In this paper, a disaster response scheme based on deep learning and augmented reality technology is proposed and a network resource reservation scheme is presented accordingly. The features of deep learning, augmented reality technology and its relevance to the disaster areas are explained. Deep learning technology can be used to accurately recognize disaster situations and to implement related disaster information as augmented reality, and to enhance disaster response capabilities by providing disaster response On-site disaster response agent, ICS (Incident Command System) and MCS (Multi-agency Coordination Systems). In the case of various disasters, the fire situation is focused on and it is proposed that a plan to strengthen disaster response capability effectively by providing fire situation recognition based on deep learning and augmented reality information. Finally, a scheme to secure network resources to utilize the disaster response method of this paper is proposed.

Development of Integrated Traffic Control System (Yolov5를 적용한 교통단속 통합 시스템 설계)

  • Yang, Young-jun;Jang, Sung-jin;Jang, Jong-wook
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2022.10a
    • /
    • pp.239-241
    • /
    • 2022
  • Currently, in Korea, a multi-seater lane (HOV) and a designated lane system are being implemented to solve traffic congestion. However, in both systems, it is difficult to crack down on cases of violations without permission, so people are required to be assigned to areas that want to crack down. In this process, manpower and budget are inefficiently consumed. To compensate for these shortcomings, we propose the development of an integrated enforcement system through YOLO, a deep learning object recognition model. If the two systems are implemented and integrated using YOLO, they will have advantages in terms of manpower and budget over existing systems because only data learning and system maintenance are considered. In addition, in the case of violations in which it is difficult for the existing unmanned system to crack down, the effect of increasing the crackdown rate through continuous learning can be expected.

  • PDF

Drone-mounted fruit recognition algorithm and harvesting mechanism for automatic fruit harvesting (자동 과일 수확을 위한 드론 탑재형 과일 인식 알고리즘 및 수확 메커니즘)

  • Joo, Kiyoung;Hwang, Bohyun;Lee, Sangmin;Kim, Byungkyu;Baek, Joong-Hwan
    • Journal of Aerospace System Engineering
    • /
    • v.16 no.1
    • /
    • pp.49-55
    • /
    • 2022
  • The role of drones has been expanded to various fields such as agriculture, construction, and logistics. In particular, agriculture drones are emerging as an effective alternative to solve the problem of labor shortage and reduce the input cost. In this study therefore, we proposed the fruit recognition algorithm and harvesting mechanism for fruit harvesting drone system that can safely harvest fruits at high positions. In the fruit recognition algorithm, we employ "You-Only-Look-Once" which is a deep learning-based object detection algorithm and verify its feasibility by establishing a virtual simulation environment. In addition, we propose the fruit harvesting mechanism which can be operated by a single driving motor. The rotational motion of the motor is converted into a linear motion by the scotch yoke, and the opened gripper moves forward, grips a fruit and rotates it for harvesting. The feasibility of the proposed mechanism is verified by performing Multi-body dynamics analysis.

Analysis on Topographic Normalization Methods for 2019 Gangneung-East Sea Wildfire Area Using PlanetScope Imagery (2019 강릉-동해 산불 피해 지역에 대한 PlanetScope 영상을 이용한 지형 정규화 기법 분석)

  • Chung, Minkyung;Kim, Yongil
    • Korean Journal of Remote Sensing
    • /
    • v.36 no.2_1
    • /
    • pp.179-197
    • /
    • 2020
  • Topographic normalization reduces the terrain effects on reflectance by adjusting the brightness values of the image pixels to be equal if the pixels cover the same land-cover. Topographic effects are induced by the imaging conditions and tend to be large in high mountainousregions. Therefore, image analysis on mountainous terrain such as estimation of wildfire damage assessment requires appropriate topographic normalization techniques to yield accurate image processing results. However, most of the previous studies focused on the evaluation of topographic normalization on satellite images with moderate-low spatial resolution. Thus, the alleviation of topographic effects on multi-temporal high-resolution images was not dealt enough. In this study, the evaluation of terrain normalization was performed for each band to select the optimal technical combinations for rapid and accurate wildfire damage assessment using PlanetScope images. PlanetScope has considerable potential in the disaster management field as it satisfies the rapid image acquisition by providing the 3 m resolution daily image with global coverage. For comparison of topographic normalization techniques, seven widely used methods were employed on both pre-fire and post-fire images. The analysis on bi-temporal images suggests the optimal combination of techniques which can be applied on images with different land-cover composition. Then, the vegetation index was calculated from the images after the topographic normalization with the proposed method. The wildfire damage detection results were obtained by thresholding the index and showed improvementsin detection accuracy for both object-based and pixel-based image analysis. In addition, the burn severity map was constructed to verify the effects oftopographic correction on a continuous distribution of brightness values.

Utilizing Airborne LiDAR Data for Building Extraction and Superstructure Analysis for Modeling (항공 LiDAR 데이터를 이용한 건물추출과 상부구조물 특성분석 및 모델링)

  • Jung, Hyung-Sup;Lim, Sae-Bom;Lee, Dong-Cheon
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.26 no.3
    • /
    • pp.227-239
    • /
    • 2008
  • Processing LiDAR (Light Detection And Ranging) data obtained from ALS (Airborne Laser Scanning) systems mainly involves organization and segmentation of the data for 3D object modeling and mapping purposes. The ALS systems are viable and becoming more mature technology in various applications. ALS technology requires complex integration of optics, opto-mechanics and electronics in the multi-sensor components, Le. data captured from GPS, INS and laser scanner. In this study, digital image processing techniques mainly were implemented to gray level coded image of the LiDAR data for building extraction and superstructures segmentation. One of the advantages to use gray level image is easy to apply various existing digital image processing algorithms. Gridding and quantization of the raw LiDAR data into limited gray level might introduce smoothing effect and loss of the detail information. However, smoothed surface data that are more suitable for surface patch segmentation and modeling could be obtained by the quantization of the height values. The building boundaries were precisely extracted by the robust edge detection operator and regularized with shape constraints. As for segmentation of the roof structures, basically region growing based and gap filling segmentation methods were implemented. The results present that various image processing methods are applicable to extract buildings and to segment surface patches of the superstructures on the roofs. Finally, conceptual methodology for extracting characteristic information to reconstruct roof shapes was proposed. Statistical and geometric properties were utilized to segment and model superstructures. The simulation results show that segmentation of the roof surface patches and modeling were possible with the proposed method.