DOI QR코드

DOI QR Code

Preliminary Perfomances Anlaysis of 1.5-m Scale Multi-Purpose Laser Ranging System

1.5m급 다목적형 레이저 추적 시스템 예비 성능 분석

  • Received : 2021.04.05
  • Accepted : 2021.06.24
  • Published : 2021.09.01

Abstract

The space Debris laser ranging system is called to be a definite type of satellite laser ranging system that measures the distance to satellites. It is a system that performs POD (Precise Orbit Determination) by measuring time of flight by firing a laser. Distance precision can be measured in mm-level units, and it is the most precise system among existing systems. Currently, KASI has built SLR in Sejong and Geochang, and utilized SLR data to verify the precise orbits of the STSAT-2C and KOMASAT-5. In recent years, due to the fall or collision of space debris, its satellites have been threatened, and in terms of security, laser tracking of space objects is receiving great interest in order to protect their own space assets and protect the safety of the people. In this paper, a 1.5m-class main mirror was applied for the system design of a multipurpose laser tracking system that considers satellite laser ranging and space object laser tracking. System preliminary performance analysis was performed based on Link Budget analysis considering specifications of major components.

우주물체 레이저 추적(DLR : space Debris Laser Ranging) 시스템은 인공위성까지의 거리를 측정하는 인공위성 레이저 추적(SLR : Satellite Laser Ranging) 시스템의 확장형이라고 할 수 있다. 레이저를 발사하여 수신하는 광자 왕복하는 시간을 측정하여 궤도 결정하는 시스템이다. 거리 정밀도는 mm급 단위로 측정 가능하고 현존하는 시스템 중 가장 정밀한 시스템이다. 현재 한국천문연구원은 인공위성 레이저 추적 시스템을 세종 및 거창에 구축하였고, 나로호 과학위성, 다목적 실용위성 5호의 정밀궤도를 검증하기 위해 SLR 데이터를 활용하였다. 최근 몇 년간 우주쓰레기의 추락 또는 충돌로 인해 자국의 위성이 위협받고 있고, 이는 안보적인 측면에서 자국 우주자산 보호, 국민의 안전을 보호하기 위해 우주물체 레이저 추적이 지대한 관심을 받고 있다. 본 논문에서는 인공위성 레이 추적, 우주물체 레이저 추적을 고려한 다목적형 레이저 추적 시스템의 시스템 설계를 위하여 1.5m 급 주경을 적용하였다. 그리고 주요 구성품의 성능(레이저 파장, 레이저 출력) 등을 고려하여 링크버짓 분석을 통해 시스템 예비 성능 분석을 수행하였다.

Keywords

References

  1. Lim, H. C., Park, J. U., Kim, D. J., Seong, K. P. and Ka, N. H., "Laser Tracking Analysis of Space Debris using SOLT System at Mt. Gamak," Journal of The Korean Society for Aeronautical and Space Sciences, Vol. 34, No. 9, September 2015, pp. 830~837.
  2. Sung, K. P., Choi, E. J., Lim, H. C., Jung, C. G., Kim, I. Y. and Choi, J. S., "Development of Operation Software for High Repetition rate Satellite Laser Ranging," Journal of The Korean Society for Aeronautical and Space Sciences, Vol. 44, No. 12, December 2016, pp. 1103~1111. https://doi.org/10.5139/JKSAS.2016.44.12.1103
  3. Grene, B., Gao, Y., More, C., Wang, Y., Boiko, A., Ritchie, J., Sang, J. and Coter, J., "Laser tracking of space debris," Proceedings of 13th Laser Ranging Workshop, Washington, 2002.
  4. Kirchner, G., Koidl, F., Friederich, F., Buske, I., Volker, U. and Riede, W., "Laser measurements to space debris from Graz SLR station," Advances in Space Research, Vol. 51, No. 1, 2013, pp. 21~23. https://doi.org/10.1016/j.asr.2012.08.009
  5. Wang, P., Zhu, W., Zou, T. and Guo, T., "A correction method of encoder bias in satellite laser ranging system," Journal of Geodesy and Geodynamics, Vol. 4, No. 3, March 2013, pp. 61~64. https://doi.org/10.3724/SP.J.1246.2013.03061
  6. Park, J. U., et al., "Development of Satellite Laser Ranging System for Space Geodesy," KASI, 2009.
  7. Degnan, J. J., "Milimeter Acuracy Satelite Laser Ranging: A Review," Geodynamics Series, Vol 25, 1993, pp. 13~162.
  8. Degnan, J. J. and Klein, B. J., "Optical antenna gain," Applied optics, Vol. 13, 1974, pp. 2397~2401. https://doi.org/10.1364/AO.13.002397
  9. Prat, W. K., "Laser Communications Systems," John Wiley and Sons, New York, 1967, pp. 121~135.
  10. McGary, J. F., Degnan, J. J., Titerton, P. J., Sweney, H. E., Conklin, B. P. and Dun, P. J., "Automated tracking for advanced satelite laser ranging system," Proceedings of SPIE AeroSense Conference, Vol. 2739, Orlando, 1996.
  11. Zhang, Z-P., Yang, F-M., Zhang, H-F., Wu, Z-B., Chen, J-P., Li, P. and Meng, W-D., "The use of laser ranging to measure space debris," Research in Astronomy and Astrophysics, Vol. 12, No. 2, 2012, pp. 212~218. https://doi.org/10.1088/1674-4527/12/2/009
  12. Vatsia, M. I., Stich, U. K. and Dunlap, D., "Night-sky radiant sterance from 450 to 200 nanometers," Research and Development Technical Report AD750609, 1972.
  13. Kim, I. I., McArthur, B. and Korevaar, E., "Comparison of laser beam propagation at 785nm and 1550nm in fog and haze for optical wireless communications," Proceeding of SPIE, 4214, 2001, pp. 26~37.
  14. Hal, F. F. Jr., Post, M. J., Richter, R. A., Lerfald, G. M. and Der, R. E., "Cirus Cloud Model, in Atmospheric Transmitance Radiance: Computer Code LOWTRAN," Air Force Geophysics Laboratory Report AFGL-TR-83-0187, 1983.