• 제목/요약/키워드: Multi Model Selection

검색결과 337건 처리시간 0.026초

A Multi-stage Multi-criteria Transshipment Model for Optimal Selection of Transshipment Nodes - Case of Train Ferry-

  • Kim, Dong-Jin;Kim, Sang-Youl
    • 한국항해항만학회지
    • /
    • 제33권4호
    • /
    • pp.271-275
    • /
    • 2009
  • A strategic decision making on location selection for product transportation includes many tangible and untangible factors. To choose the best locations is a difficult job in the sense that objectives usually conflict with each other. In this paper, we consider a multi stage multi criteria transshipment problem with different types of items to be transported from the sources to the destination points. For the optimization of the problem, a goal programming formulation will be presented in which the location selection for each product type will be determined under the multi objective criteria. In the study, we generalize the transshipment model with a variety of product types and finite number of different intermediate nodes between origins and destinations. For the selection of the criteria we selected the costs(fixed cost and transportation cost), location numbers, and unsatisfied demand for each type of products in multi stage transportation, which are the main goals in transshipment modelling problems. The related conditions are also modelled through linear formats.

Feature Selection for Multi-Class Support Vector Machines Using an Impurity Measure of Classification Trees: An Application to the Credit Rating of S&P 500 Companies

  • Hong, Tae-Ho;Park, Ji-Young
    • Asia pacific journal of information systems
    • /
    • 제21권2호
    • /
    • pp.43-58
    • /
    • 2011
  • Support vector machines (SVMs), a machine learning technique, has been applied to not only binary classification problems such as bankruptcy prediction but also multi-class problems such as corporate credit ratings. However, in general, the performance of SVMs can be easily worse than the best alternative model to SVMs according to the selection of predictors, even though SVMs has the distinguishing feature of successfully classifying and predicting in a lot of dichotomous or multi-class problems. For overcoming the weakness of SVMs, this study has proposed an approach for selecting features for multi-class SVMs that utilize the impurity measures of classification trees. For the selection of the input features, we employed the C4.5 and CART algorithms, including the stepwise method of discriminant analysis, which is a well-known method for selecting features. We have built a multi-class SVMs model for credit rating using the above method and presented experimental results with data regarding S&P 500 companies.

A Multi-period Behavioral Model for Portfolio Selection Problem

  • Pederzoli, G.;Srinivasan, R.
    • 한국경영과학회지
    • /
    • 제6권2호
    • /
    • pp.35-49
    • /
    • 1981
  • This paper is concerned with developing a Multi-period Behavioral Model for the portfolio selection problem. The unique feature of the model is that it treats a number of factors and decision variables considered germane in decision making on an interrelated basis. The formulated problem has the structure of a Chance Constrained programming Model. Then empoloying arguments of Central Limit Theorem and normality assumption the stochastic model is reduced to that of a Non-Linear Programming Model. Finally, a number of interesting properties for the reduced model are established.

  • PDF

연구과제 선정.평가 체계설계에 관한 연구 (Project Selection & Evaluation System Design and Implementation-Literature Review and Case Study-)

  • 용세중;최덕출;한종우;정용훈;이원영
    • 기술혁신연구
    • /
    • 제2권1호
    • /
    • pp.116-141
    • /
    • 1994
  • This paper presents a model for R&D project selection and evaluation system design developed through literature review. The model emphasizes the fitness between the five elements of the system : evaluation phase and purpose, personnel and organization, evaluation critiria and decision model, evaluation form and procedure, and projects. The model was applied in real situation as a test case. The important findings are that a good project selection and evaluation model contributes only partially to the effectiveness of the project selection and that system development and implementation activity is a dynamic and multi-facetted learning process.

  • PDF

An Integrated Mathematical Model for Supplier Selection

  • Asghari, Mohammad
    • Industrial Engineering and Management Systems
    • /
    • 제13권1호
    • /
    • pp.29-42
    • /
    • 2014
  • Extensive research has been conducted on supplier evaluation and selection as a strategic and crucial component of supply chain management in recent years. However, few articles in the previous literature have been dedicated to the use of fuzzy inference systems as an aid in decision-making. Therefore, this essay attempts to demonstrate the application of this method in evaluating suppliers, based on a comprehensive framework of qualitative and quantitative factors besides the effect of gradual coverage distance. The purpose of this study is to investigate the applicability of the numerous measures and metrics in a multi-objective optimization problem of the supply chain network design with the aim of managing the allocation of orders by coordinating the production lines to satisfy customers' demand. This work presents a dynamic non-linear programming model that examines the important aspects of the strategic planning of the manufacturing in supply chain. The effectiveness of the configured network is illustrated using a sample, following which an exact method is used to solve this multi-objective problem and confirm the validity of the model, and finally the results will be discussed and analyzed.

Gaussian Mixture Model을 이용한 다중 범주 분류를 위한 특징벡터 선택 알고리즘 (Feature Selection for Multi-Class Genre Classification using Gaussian Mixture Model)

  • 문선국;최택성;박영철;윤대희
    • 한국통신학회논문지
    • /
    • 제32권10C호
    • /
    • pp.965-974
    • /
    • 2007
  • 본 논문에서는 내용 기반 음악 범주 분류 시스템에서 다중 범주를 위한 특징벡터 선택 알고리즘을 제안한다. 제안된 특징벡터 선택 알고리즘은 분리 성능을 측정할 때 가우시안 혼합 모델(Gaussian Mixture Model: GMM)을 기반으로 GMM separation score을 측정함으로써 확률분포 및 분리 성능 추정의 정확도를 높였고, sequential forward selection 방법을 개선하여 이전까지 선택된 특징벡터들이 분리를 잘 하지 못하는 범주들을 기준으로 다음 특징벡터를 선택하는 알고리즘을 제안하여 다중 범주 분류의 성능을 높였다. 제안된 알고리즘의 성능 검증을 위해 음색, 리듬, 피치 등 오디오 신호의 특징을 나타내는 다양한 파라미터를 오디오 신호로부터 추출하여 제안된 특징벡터 선택 알고리즘과 기존의 알고리즘으로 특징벡터를 선택한 후 GMM classifier와 k-NN classifier를 이용하여 분류 성능을 평가하였다. 제안된 특징벡터 선택 알고리즘은 기존 알고리즘에 비하여 3%에서 8% 정도의 분류 성능이 향상된 것을 확인할 수 있었고 특히 낮은 차원의 특징벡터의 분류 실험에서는 분류 정확도 측면에서 5%에서 10% 향상된 좋은 성능을 보였다.

A Fuzzy TOPSIS Approach Based on Trapezoidal Numbers to Material Selection Problem

  • Celik, Erkan;Gul, Muhammet;Gumus, Alev Taskin;Guneri, Ali Fuat
    • Journal of Information Technology Applications and Management
    • /
    • 제19권3호
    • /
    • pp.19-30
    • /
    • 2012
  • Material selection is a complex problem in the design and development of products for diverse engineering applications. This paper is aimed to present a fuzzy decision making approach to deal with the material selection in engineering design problems. A fuzzy multi criteria decision-making model is proposed for solving the material selection problem. The proposed model makes use of fuzzy TOPSIS (Technique for Order reference by Similarity to Ideal Solution) with trapezoidal numbers for evaluating the criteria and ranking the alternatives. And result is compared with fuzzy VIKOR (VlseKriterijumska Optimizacija I Kompromisno Resenje in Serbian, means Multi criteria Optimisation and Compromise Solution) which is proposed by Jeya Girubha and Vinodh [2012]. The present paper is aimed to also improve literature of fuzzy decision making for material selection problem.

Multi-Dimensional Selection Method of Port Logistics Location Based on Entropy Weight Method

  • Ruiwei Guo
    • Journal of Information Processing Systems
    • /
    • 제19권4호
    • /
    • pp.407-416
    • /
    • 2023
  • In order to effectively relieve the traffic pressure of the city, ensure the smooth flow of freight and promote the development of the logistics industry, the selection of appropriate port logistics location is the basis of giving full play to the port logistics function. In order to better realize the selection of port logistics, this paper adopts the entropy weight method to set up a multi-dimensional evaluation index, and constructs the evaluation model of port logistics location. Then through the actual case, from the environmental dimension and economic competition dimension to make choices and analysis. The results show that port d has the largest logistics competitiveness and the highest relative proximity among the three indicators of hinterland city economic activity, hinterland economic structure, and port operation capacity of different port logistics locations, which has absolute advantages. It is hoped that the research results can provide a reference for the multi-dimensional selection of port logistics site selections.

신뢰성 높은 서브밴드 특징벡터 선택을 이용한 잡음에 강인한 화자검증 (Noise Robust Speaker Verification Using Subband-Based Reliable Feature Selection)

  • 김성탁;지미경;김회린
    • 대한음성학회지:말소리
    • /
    • 제63호
    • /
    • pp.125-137
    • /
    • 2007
  • Recently, many techniques have been proposed to improve the noise robustness for speaker verification. In this paper, we consider the feature recombination technique in multi-band approach. In the conventional feature recombination for speaker verification, to compute the likelihoods of speaker models or universal background model, whole feature components are used. This computation method is not effective in a view point of multi-band approach. To deal with non-effectiveness of the conventional feature recombination technique, we introduce a subband likelihood computation, and propose a modified feature recombination using subband likelihoods. In decision step of speaker verification system in noise environments, a few very low likelihood scores of a speaker model or universal background model cause speaker verification system to make wrong decision. To overcome this problem, a reliable feature selection method is proposed. The low likelihood scores of unreliable feature are substituted by likelihood scores of the adaptive noise model. In here, this adaptive noise model is estimated by maximum a posteriori adaptation technique using noise features directly obtained from noisy test speech. The proposed method using subband-based reliable feature selection obtains better performance than conventional feature recombination system. The error reduction rate is more than 31 % compared with the feature recombination-based speaker verification system.

  • PDF

공급 리스크를 고려한 공급자 선정의 다단계 의사결정 모형 (A Multi-Phase Decision Making Model for Supplier Selection Under Supply Risks)

  • 유준수;박양병
    • 산업경영시스템학회지
    • /
    • 제40권4호
    • /
    • pp.112-119
    • /
    • 2017
  • Selecting suppliers in the global supply chain is the very difficult and complicated decision making problem particularly due to the various types of supply risk in addition to the uncertain performance of the potential suppliers. This paper proposes a multi-phase decision making model for supplier selection under supply risks in global supply chains. In the first phase, the model suggests supplier selection solutions suitable to a given condition of decision making using a rule-based expert system. The expert system consists of a knowledge base of supplier selection solutions and an "if-then" rule-based inference engine. The knowledge base contains information about options and their consistency for seven characteristics of 20 supplier selection solutions chosen from articles published in SCIE journals since 2010. In the second phase, the model computes the potential suppliers' general performance indices using a technique for order preference by similarity to ideal solution (TOPSIS) based on their scores obtained by applying the suggested solutions. In the third phase, the model computes their risk indices using a TOPSIS based on their historical and predicted scores obtained by applying a risk evaluation algorithm. The evaluation algorithm deals with seven types of supply risk that significantly affect supplier's performance and eventually influence buyer's production plan. In the fourth phase, the model selects Pareto optimal suppliers based on their general performance and risk indices. An example demonstrates the implementation of the proposed model. The proposed model provides supply chain managers with a practical tool to effectively select best suppliers while considering supply risks as well as the general performance.