3차원 영상을 제작하기 위해서는 여러 시점의 색상 영상과 함께 깊이 정보를 필요로 한다. 하지만 깊이 정보를 얻을 때 사용하는 ToF 카메라는 해상도가 낮으며 적외선 신호의 주파수 문제 때문에 최대 3대까지 사용할 수 있다. 따라서 깊이 정보를 색상 영상과 함께 사용하기 위해서 깊이 정보의 업샘플링이 필수적이다. 업샘플링은 깊이 정보를 색상 카메라 위치로 3차원 워핑하고 결합형 양방향 필터(joint bilateral filter, JBF)를 사용하여 빈 영역을 채우는 방법으로 진행된다. 업샘플링은 오랜 시간이 소요되지만 그래픽스 프로세싱 유닛(graphics processing units, GPU)를 이용하여 빠르게 수행될 수 있다. 본 논문에서는 다중 GPU의 병렬 수행을 통하여 빠르게 다시점 깊이맵을 생성할 수 있는 방법을 제안한다. 다중 GPU 병렬 수행은 범용 목적 GPU(general purpose computing on GPU, GPGPU) 중의 하나인 CUDA를 이용하였으며, 본 논문에서 제안된 방법을 이용하여 3개의 GPU 사용한 실험 결과 초당 35 프레임의 다시점 깊이맵을 생성했다.
Graphical Processing Units(GPUs)는 비교적 정형화된 연산을 병렬적으로 처리함으로써 높은 성능을 제공한다. 기술의 발전에 따라 GPU 환경에서 다양한 응용 실행을 시도하는 General Purpose GPU(GPGPU) 실행환경이 연구되고 있으나, 자원 분배, 스케줄링 등의 GPU 자원을 효율적으로 사용하기에는 아직 제한적이다. 최신의 GPU 구조들은 커널의 동시 실행을 지원하지만 같은 응용 안에서만 동시 실행이 가능하다는 문제점이 있어 NVIDIA는 Multi-Process Service(MPS)를 제안하였다. MPS는 다른 응용에 속한 커널도 동시 실행할 수 있도록 서비스한다. 하지만 응용의 실행 특성 및 동시 실행되는 패턴이 미리 파악되어 있지 않으면 MPS 장점을 최대한으로 취할 수 없다. 본 논문에서는 응용 프로파일링을 통해 응용의 특성을 파악하고, 동시 실행 스케줄링 알고리즘을 적용하여 실험을 진행하였다. MPS의 장점을 최대한으로 활용하기 위해서는 함께 돌릴 응용의 특성을 파악하고, 프로파일링을 통해 동시 실행하는 응용들의 순서를 제어하는 스케줄링 알고리즘이 중요함을 보인다.
High-performance Linpack (HPL) is among the most popular benchmarks for evaluating the capabilities of computing systems and has been used as a standard to compare the performance of computing systems since the early 1980s. In the initial system-design stage, it is critical to estimate the capabilities of a system quickly and accurately. However, the original HPL mathematical model based on a single core and single communication layer yields varying accuracy for modern processors and accelerators comprising large numbers of cores. To reduce the performance-estimation gap between the HPL model and an actual system, we propose a mathematical model for multi-communication layered HPL. The effectiveness of the proposed model is evaluated by applying it to a GPU cluster and well-known systems. The results reveal performance differences of 1.1% on a single GPU. The GPU cluster and well-known large system show 5.5% and 4.1% differences on average, respectively. Compared to the original HPL model, the proposed multi-communication layered HPL model provides performance estimates within a few seconds and a smaller error range from the processor/accelerator level to the large system level.
3D 그래픽 처리 과정은 크게 지오메트리 단계와 렌더링 단계로 구분된다. 본 논문에서는 듀얼페이즈 멀티코어 GP-GPU에서 지오메트리 처리를 가속화시키기 위한 방법을 제안한다. GP-GPU의 SIMD, 듀얼페이즈 구조를 이용한 병렬적 데이터 처리와 메모리 프리패치를 이용하여, 지오메트리 처리를 가속화 시킬 수 있었으며, 모든 기능을 사용할 시 19%의 성능 향상을 나타내었다.
최근 멀티코어 프로세서의 이용이 증가함에 따라, 멀티코어를 이용한 다양한 병렬화 기법들이 제안되고 있다. 모바일 환경에서도 멀티코어 구조를 적용한 프로세서들이 등장하면서 병렬화 기법들이 연구되고 있다. 하지만, 아직까지 모바일 환경에서의 CPU의 성능은 한계가 있다. 이를 병렬처리와 실수 연산이 뛰어난 GPGPU(General-Purpose computing in Graphics Processing Units)를 멀티코어 구조로 설계함으로써 다른 전용 하드웨어의 추가 없이 성능을 향상 시킬 수 있다. 본 논문에서는 모바일 환경에 적합하게 설계된 멀티코어 GPGPU를 이용하여 H.264 디코더의 Inverse Quantization, Inverse DCT, Color Space Conversion 모듈을 구현하였다. 멀티코어 GPGPU를 이용한 H.264 전체 시스템 동작 시 50%의 성능 향상이 있었다.
최근 모바일 환경에서도 GUI(Graphic User Interface)나 3D 컨텐츠, Flash 등 다양한 그래픽 효과를 이용한 멀티미디어 컨텐츠들이 요구 된다. 이러한 컨텐츠들을 지원하 위하여 모바일 기기에도 GPU (Graphic Processing Unit)의 탑재가 필요조건이 되었다. 본 논문에서는 모바일 환경에 적합하도록 설계된 GP-GPU를 이용하여 OpenVG 가속기를 구현하였다. OpenVG 가속기는 크로노스 그룹에서 제공하는 샘플 이미지들을 사용하여 검증하였으며, OpenVG에서 제공해야 하는 동작 및 기능들이 정상 동작함을 검증하였다. 본 논문에서 구현한 가속기는 Tiger Image 렌더링시 초당 2프레임의 성능을 가진다.
매우 빠른 GPU의 성능과 저가의 개발 비용으로, 최신 GPU는 대용량 계산과학 분야에 꼭 필수적인 자원으로 등장하였다. 이 논문에서는 멀티-GPU 클러스터 시스템에서 GPU 컴퓨팅 기술을 적용한 대용량 Monte Carlo 알고리즘을 개발하였다. MPI와 CUDA를 동시에 적용한 결과 8개 GPU까지 병렬 확장성을 얻을 수 있었다. 병렬 성능 확장성 분석 결과, 멀티-GPU 클러스터에서는 GPU 사이의 데이터 통신이 전체 프로그램 성능 향상을 결정하는 매우 중요한 요인임을 보였다.
데이터 정렬은 현대 사회에 존재하는 수많은 디지털 데이터에 대한 중요한 가공 작업 중의 하나이지만, 데이터가 방대할수록 정렬 과정 자체도 많은 연산시간을 소비한다. 본 논문에서 데이터 배열을 분할하여 PC에 있는 CPU와 GPU에서 각각 동시에 정렬을 수행하는 혼합 정렬 알고리즘을 제안하였다. 각 장치의 처리 성능을 바탕으로 가장 효율적인 배열의 분할 범위를 결정하고 각각 분할된 영역을 CPU와 GPU에서 동시에 정렬함으로써 전체 정렬 시간을 단축시켰다. 실험결과에서 알 수 있듯 혼합 정렬이 GPU만 활용한 정렬보다 8%이상 정렬 수행 속도를 향상시켰다.
RPC(Remote Procedure Call) 기반 GPU(Graphics Processing Unit) 가상화 기술은 다수의 사용자 가상머신에게 GPU를 공유하기 위한 기술 중 하나이다. 하지만 클라우드 환경에서 일반적인 GPU는 CPU나 메모리와는 다르게 가상머신의 자원 사용량을 제한할 수 있는 자원 격리(Isolation) 기술을 제공하지 않는다. 특히 RPC 기반 가상화 환경에서는 각 가상머신에서 실행되는 GPU 작업은 멀티 프로세스 형태로 수행되기 때문에 자원격리 기술의 부재는 자원 경쟁으로 인한 성능 저하 문제를 발생시킨다. 그리고 GPU 메모리 경쟁은 가상머신들의 자원 요구량이 많을수록 성능저하를 가속화하고 가상머신 사이의 균등한 성능을 보장하지 못하기 때문에 공평성이 저하되는 문제를 발생시킨다. 본 논문에서는 RPC 기반 GPU 가상화 환경에서 사용자 가상머신들의 GPU 메모리 요구량이 가용 GPU 메모리 용량을 초과했을 때 발생하는 자원 경쟁으로 인한 성능 저하 문제 분석하고 이를 해결하기 위한 GPU 메모리 관리 기법을 제안한다. 또한, 실험을 통해 본 논문에서 제안한 GPU 메모리 관리 기법이 GPGPU 작업의 성능을 향상시킬 수 있다는 것을 보여준다.
In this study, we design an optimized Graphics Processing Unit (GPU)-based GNSS signal processing technique with the goal of designing and implementing a GNSS Software Defined Receiver (SDR) that can operate in real time all-in-view mode under multi-constellation and multi-frequency signal environment. In the proposed structure the correlators of the existing GNSS SDR are processed by the GPU. We designed a memory structure and processing method that can minimize memory access bottlenecks and optimize the GPU memory resource distribution. The designed GNSS SDR can select and operate only the desired GNSS or desired satellite signals by user input. Also, parameters such as the number of quantization bits, sampling rate, and number of signal tracking arms can be selected. The computing capability of the designed GPU-based GNSS SDR was evaluated and it was confirmed that up to 2400 channels can be processed in real time. As a result, the GPU-based GNSS SDR has sufficient performance to operate in real-time all-in-view mode. In future studies, it will be used for more diverse GNSS signal processing and will be applied to multipath effect analysis using more tracking arms.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.