• 제목/요약/키워드: Moving object detection

검색결과 403건 처리시간 0.025초

가상 환경에서의 손동작을 사용한 물체 조작에 대한 시각적 피드백 시스템 (Visual Feedback System for Manipulating Objects Using Hand Motions in Virtual Reality Environment)

  • 서웅;권상모;임인성
    • 한국컴퓨터그래픽스학회논문지
    • /
    • 제26권3호
    • /
    • pp.9-19
    • /
    • 2020
  • 최근 다양한 종류의 가상 현실 기기가 개발되면서 고전적인 사용자 입력 방식 이외에도 사용자의 신체 동작을 인식하여 현실감을 높이려는 기술에 관한 연구가 활발하게 진행되고 있다. 이러한 장치 중의 하나인 립모션 컨트롤러는 사용자의 손동작을 인식하여 가상 현실 환경에서 사용자의 손 모양을 실시간으로 나타낼 수 있다. 하지만 인식한 사용자의 손을 사용하여 가상 현실의 물체를 조작하면 종종 손이 물체를 통과하게 되는데, 이러한 상호작용은 실제 현실과는 거리감이 있다. 본 연구에서는 가상 현실에서 사용자의 손과 물체 간의 상호작용 현실감을 높이기 위한 시각적 피드백 시스템의 구축 방법을 제시한다. 가상의 현실에서 사용자의 손과 가상 물체가 충돌하는지 광선 추적법을 활용하여 정밀하게 검사하고, 충돌하였을 때 부호 거리 장과 역기구학을 통해 물체 내부로 들어간 사용자의 손가락 말단의 위치를 물체 표면 밖으로 이동시켜 사용자의 손을 재구성하는 과정을 통해 시각적 피드백을 준다. 이를 통해 실시간으로 가상 현실에서 현실감 있는 상호작용을 할 수 있다.

FMCW Radar를 이용한 선박 탐지 및 추적 기법 구현 (Algorithm Implementation for Detection and Tracking of Ships Using FMCW Radar)

  • 홍단비;양찬수
    • 한국해양환경ㆍ에너지학회지
    • /
    • 제16권1호
    • /
    • pp.1-8
    • /
    • 2013
  • 본 연구에서는 FMCW 레이더를 이용해 수평적인 해상 감시를 위한 선박 탐지 및 추적 기법을 개발하였다. FMCW레이더는 일반적으로 웜업(warm-up) 시간이 짧고 날씨나 대기상태에 영향을 받지 않으며 가볍고 사용 편의성이 높기 때문에 해상 감시 분야에서 중요한 역할을 할 수 있다. 본 논문에서는 X-밴드 FMCW 레이더의 데이터 처리 기법과 선박 탐지 및 추적 알고리듬 구현 결과를 소개한다. 선박 탐지는 원시자료(spoke)에서 합성된 프레임 데이터를 사용하여 육지부분을 제거한 후 형태학적 처리 기법을 이용한 임계치가 적용되었다. 선박의 추적은, 선박의 예상 최대선속(19 kn)과 프레임간의 시간간격(5 sec)을 고려하여 다음 프레임에서의 선박의 위치를 예상하는 탐색창(search-window)을 사용하였다. 평택항에서 실시된 실험에서 실제 운항중인 다섯 척의 선박이 사용되었으며, 이중 25 m 이상인 선박의 경우 완벽하게 탐지되었고, 소형 어선의 경우 평균적으로 85.38%의 탐지율을 보였다. 어선의 낮은 탐지율은 부이 주변을 항해할 때 주로 발생하였으며, 재질이 유리섬유강화플라스틱(FRP)이며 선박 높이가 낮은 것이 원인으로 판단된다. 추적기법에 의한 결과와 선박자동식별장치(Automatic Identification System) 비교를 통해 각 선박의 추적은 잘 이루어진 것으로 확인되었으며, 추적률은 평균적으로 95.12%이었으며, 길이 25 m 이상 선박의 추적률은 100%이었다. 향후 소형어선에 대한 탐지와 추적기법 향상을 위한 알고리듬 개선이 요구된다.

YOLO v4 기반 혼잡도로에서의 움직이는 물체 검출 및 식별 (Detection and Identification of Moving Objects at Busy Traffic Road based on YOLO v4)

  • 이추담;정석용;왕욱비;진락;손진구;송정영
    • 한국인터넷방송통신학회논문지
    • /
    • 제21권1호
    • /
    • pp.141-148
    • /
    • 2021
  • 일부 네거리나 혼잡도로에서 특정 시간대에 행인이 많고 도로가 막혀서 발생하는 교통사고가 적지 않다. 특히 인근에 학교교차로가 있어 바쁜 시간에 학생들의 교통안전을 지키는 것이 중요하다. 과거에는 교통 신호등을 설 계 했을 때 행인의 안전성을 고려하지 않고 자동차 인식과 교통 최적화에 대하여 연구 했다. 행인, 특히 학생들의 안전을 확보하는 전제에서 가능한 한 도로의 소통을 유지하는 것이 본 연구의 중점적인 연구 방향이다. 본 연구는 사람, 오토바이, 자전거, 자동차, 버스의 식별문제를 중점적으로 연구할 것이다. 조사와 비교를 통해 본 연구는 YOLO v4 네트워크로 목표물의 위치와 수량을 식별하는 것을 제시한다. YOLO v4는 작은 목표물의 식별 능력이 강하고 정밀도가 높으며 처리속도가 빠르다는 특징을 가지고 있으며, 데이터 수집 대상을 설정하여 이미지 집합을 훈련하고 테스트 한다. 움직이는 영상에서 목표물의 정확도, 실수율과 누락율에 대한 통계를 사용하여, 본 연구에서 훈련된 네트워크는 움직이는 이미지 속의 사람, 오토바이, 자전거, 자동차와 버스를 정확하게 식별 할 수 있다.

딥러닝 기반 터널 영상유고감지 시스템 개발 연구 (Development of a deep-learning based tunnel incident detection system on CCTVs)

  • 신휴성;이규범;임민진;김동규
    • 한국터널지하공간학회 논문집
    • /
    • 제19권6호
    • /
    • pp.915-936
    • /
    • 2017
  • 본 논문에서는 2016년을 기준으로 강화된 터널 방재시설 설치 및 관리지침과, 점차 강화되고 있는 터널 CCTV설치 터널등급 기준과 터널 영상유고감지 시스템의 설치 운용에 대한 요구의 증가 상황을 정리해 보고하였다. 그럼에도, 가동중인 알고리즘 기반의 터널 영상유고감시 시스템의 정상 인지율은 50%가 채 되지 않는 것으로 파악되었으며, 그에 대한 주원인은 터널 내 낮은 조도, 심한 먼지로 인한 영상 선명도 저하, 낮은 CCTV 설치위치로 인한 이동객체의 겹침현상 등으로 파악되었다. 따라서, 본 연구에서는 이러한 열악한 조건에서도 영상유고 정상 인지율을 확보할 수 있는 딥러닝 기반 영상유고감지 시스템을 개발하였으며, 이에 대한 이론적 배경 제시와 시스템의 타당성 검토 연구가 진행되었다. 개발 시스템의 타당성 검토 연구는 터널 방재시설 및 관리지침 내 영상유고감지 항목중 정지 및 역주행 차량을 감지하는 주요 정보인 차량 객체 인식과 보행자 감지를 중심으로 진행되었다. 또한, (1) 동일 터널 내에서 학습과 추론이 이루어 지는 경우와 (2) 다양한 터널의 영상 정보를 통합 학습하고, 각 터널의 영상유고감지에 투입되는 경우, 두개의 시나리오를 설정하여 타당성 검토를 진행하였다. 두 시나리오 모두 일정 시간의 학습 자료와 유사한 상황에 대해서는 열악한 터널환경과 무관하게 그 감지성능이 80% 이상으로 우수하나, 추가 학습 없이 학습된 시간 구간과 멀어질수록 그 추론 성능은 상대적으로 낮은 40% 수준으로 떨어짐을 알 수 있었다. 그러나, 시간이 지남에 따라 자동으로 누적되어 확장되는 영상유고 빅데이터를 반복적으로 학습함으로써, 설치된 영상유고감지 시스템의 보완이나 보정절차 없이도 자동으로 그 영상유고감지 성능이 향상될 수 있음을 보였다.

방향각 및 거리 정보에 의한 이동 로봇의 실시간 목표물 추종 방법 (A Method for Real Time Target Following of a Mobile Robot Using Heading and Distance Information)

  • 고낙용;서동진;문용선
    • 한국지능시스템학회논문지
    • /
    • 제18권5호
    • /
    • pp.624-631
    • /
    • 2008
  • 본 논문은 이동 로봇이 움직이는 목표물을 실시간으로 따라가게 하는 방법을 제안한다. 로봇은 이동하는 목표물을 일정한 방향과 거리를 유지하면서 따라간다. 이 방법은 다음의 두 단계로 이루어진다. 첫 번째 단계에서는 목표물의 위치를 로봇 좌표계 상에서 구해낸다. 두 번째 단계에서는 목표물을 따라가기 위한 로봇의 직진 속도와 회전 속도를 구해낸다. 목표물의 위치를 구하기 위해 영역 센서 데이터를 히스토그램으로 나타낸다. 실시간으로 계산된 로봇 좌표계에서의 목표물의 위치정보를 사용하여 목표물을 따라가게 하는 로봇의 직진 속도와 회전 속도를 구한다. 로봇의 직진 속도와 회전 속도는 로봇의 목표물로의 방향과 목표물까지의 거리를 원하는 값으로 수렴할 수 있게 한다. 제안된 방법의 성능을 시뮬레이션을 통하여 검증하였다. 시뮬레이션에서 목표물은 직선 궤적, 직사각형 궤적, 그리고 원 궤적에 의해 움직이게 하였다. 시뮬레이션결과 목표물이 급격히 방향을 바꾸는 경우에는 순간적으로 목표물 추적이 불가능함을 알 수 있는데, 이것은 실시간 추적에서는 피할 수 없는 문제이다. 그렇지만, 이 경우에도 로봇이 빠른 속도로 목표물을 추적하여 다시 따라잡게 된다. 제안된 방법은 로봇이 목표물을 따라가도록 하는 경우에는 물론 여러 대 로봇이 대형을 갖추어 이동하게 하는 경우에도 적용도 가능하다.

실시간 범죄 모니터링을 위한 CCTV 협업 추적시스템 개발 연구 (Development of CCTV Cooperation Tracking System for Real-Time Crime Monitoring)

  • 최우철;나준엽
    • 한국산학기술학회논문지
    • /
    • 제20권12호
    • /
    • pp.546-554
    • /
    • 2019
  • 본 논문에서는 CCTV를 통해 실시간 범죄에 대응할 수 있도록 CCTV 카메라 간 협업이 가능한 기술과 이를 활용한 실시간 범죄대응 서비스에 대해 연구하였다. 본 연구에서 개발하고자 하는 CCTV 협업 기술은 한 곳의 CCTV에서 추출된 이동 객체(용의자)가 범위를 벗어나 다른 CCTV로 이동했을 때 객체의 유사도 정보를 관제자에게 전달하여 선택된 객체를 추적하는 프로그램 모델이다. 일련의 유사도 정보 획득 과정은 객체 감지(object detection), 사전 분류(pre-classification), 특징 추출(feature extraction), 분류(classification)의 4단계의 프로세스로 진행된다. 이는 주로 사후처리용으로 사용되던 CCTV 모니터링을 긴박한 실시간 범죄에 대응하도록 개선시켜 범죄발생 초기대응 체계를 강화 할 수 있다. 또한 관제요원의 모니터링에만 의존하는 CCTV 관제시스템을 부분 자동화하여 지자체 관제센터 운영효율성을 증대시킬 수 있다. 해당 기술 및 서비스는 안양시 테스트베드에 구축하여 시범운영할 예정으로, 서비스가 안정화가 되면 전국 지자체에 확산하여 상용화가 될 것으로 예상된다. 향후 CCTV 협업 뿐 아니라 실시간 개인 정밀위치결정, 스마트폰 연계 등 통합 방범서비스 연구가 진행되어 시민들이 보다 안전한 생활을 영위할 수 있기를 기대한다.

로드셀 기반의 실내 위치추적 보완 기법 (Supplementation of the Indoor Location Tracking Techniques Based-on Load-Cells Mechanism)

  • 이남수;문승진
    • 인터넷정보학회논문지
    • /
    • 제17권6호
    • /
    • pp.1-8
    • /
    • 2016
  • 기존의 실내 침입 탐지 및 대상 객체의 이동 경로 추정은 객체가 수신 장치를 갖고 있어야 하는 문제점과 단일 셀(약 $100cm{\times}100cm$)의 공간 내에 객체의 수와 이동 범위를 파악할 수 없는 문제가 지적되어 왔다. 이러한 방법을 해결하기 위해 보편적으로 사용되는 기술인 CCTV를 이용한 방법은 환경적인 변수로 인하여 상당히 제한적일 뿐만 아니라 음영 지역에서(e.g., 상황인식 시스템이 설치되지 않은 곳, 광량이 현저히 낮아 환경의 상황을 파악할 수 없을 경우) 서비스를 받을 수 없다. 이에 본 논문은 센서 네트워크(Sensor Network) 시스템 기반의 객체 탐지 및 대응의 범위 확대가 가능함과 동시에 대상 객체의 이동경로 추적을 능동적으로 대응할 수 있는 실내 보안감시 시스템을 제안한다. 제안된 시스템은 가상의 시나리오에 기반을 두어 구현되었으며, 기존 시설에서 발생할 수 있는 환경적인 단점인 신호의 단절 및 사물의 위치 추정에 대한 손실을 보완하며, 위급한 상황 및 객체에 대한 행동 패턴의 신속한 분석이 가능케 되어, 비상시 사고 예방 및 발생된 상황에 대한 유연한 대처가 가능하리라 사료된다.

두 대역 상반된 스윕방향 hyperbolic frequency modulation 펄스로 수중물체 시선속도추정 기법 및 성능분석 (Underwater object radial velocity estimation method using two different band hyperbolic frequency modulation pulses with opposite sweep directions and its performance analysis)

  • 조점군;정의철
    • 한국음향학회지
    • /
    • 제42권1호
    • /
    • pp.25-31
    • /
    • 2023
  • 능동소나를 이용하여 수중물체의 속도를 추정하려면 Continuous Wave(CW) 펄스를 이용하는 것이 일반적이나, 수중물체의 속도가 느리고 근거리의 해양에서는 잔향음의 영향으로 수중물체의 속도 추정이 용이하지 않다. 2017년도에 Wang 연구진은 이를 극복하고자 수중물체의 속도에 의한 도플러 변이에 둔감한 광대역 신호인 Hyperbolic Frequency Modulation(HFM) 펄스 두 개를 상반된 스윕방향으로 이용하였다. 두 펄스 간 송신 시간간격과 탐지시간 차이의 변화를 통하여 수중물체 속도 추정이 가능하다는 것을 시뮬레이션으로 제시하였다. 하지만 동일한 대역을 이용하므로 상호상관성에 의해서 수중물체 탐지 성능이 영향을 받을 수 밖에 없다. 상호상관성에 의한 수중물체 탐지 성능저하를 방지하기 위하여 대역이 분리된 상반된 스윕방향의 두 HFM 펄스 이용을 제안한다. 본 논문에서는 상반된 스윕방향의 두 대역 HFM을 이용하여 수중물체의 시선속도 추정에 관한 이론을 도출하였고, 펄스길이와 대역폭이 1 s와 400 Hz인 HFM 펄스로 시뮬레이션을 수행하였다. 제안한 방법을 이용하여 수중물체의 시선속도를 추정하면 약 6 %의 오차로 표적 속도 추정이 가능하다는 것을 시뮬레이션을 통하여 확인하였다.

Ensemble Deep Network for Dense Vehicle Detection in Large Image

  • Yu, Jae-Hyoung;Han, Youngjoon;Kim, JongKuk;Hahn, Hernsoo
    • 한국컴퓨터정보학회논문지
    • /
    • 제26권1호
    • /
    • pp.45-55
    • /
    • 2021
  • 본 논문은 고해상도를 가지는 영상에서 겹쳐져있는 소형 물체를 효과적으로 검출하고 추적하는 알고리즘을 제안한다. Coarse to Fine 방식을 기본으로 하는 두 개의 Deep-Learning Network을 앙상블 형태로 구성하여 차량이 존재할 위치를 미리 판단하고 서브영역으로 선택한 이미지로부터 차량을 정확하게 검출한다. Coarse 단계에서는 서로 다른 다수의 Deep-Learning Network 에 대한 각각의 결과로 Voting Space를 생성한다. 각 Voting Space 의 조합을 통해 Voting Map을 만들고 차량이 존재할 위치를 선택한다. Fine 단계에서는 Coarse 단계에서 선택된 영역을 기준으로 서브영역을 추출하고 해당 영역을 최종 Deep-Learning Network 에 입력한다. 서브 영역은 Voting Map을 이용하여 영상에서의 높이에 적합한 크기의 동적 윈도우를 생성함으로써 정의되며, 본 논문에서는 원거리에서 근거리로 접근하는 도로의 이미지를 대상으로 미리 계산된 매핑테이블을 적용하였다. 각 서브 영역 간 이동하는 차량의 동일성 판단은 검출된 영역의 하단 중심점에 대한 근접성을 기반으로 하였으며, 이를 통해 이동하는 차량의 정보를 트래킹 하였다. 실제 주야간 도로 CCTV를 통해 획득한 실시간 영상에서 처리 속도 및 검출 성능을 비교 실험하여 제안한 알고리즘을 평가하였다.

압축영역에서 움직임 벡터의 재추정을 이용한 비디오 해석 기법 (Video analysis using re-constructing of motion vectors on MPEG compressed domain)

  • 김낙우;김태용;강응관;최종수
    • 대한전자공학회논문지SP
    • /
    • 제39권3호
    • /
    • pp.78-87
    • /
    • 2002
  • 본 논문은 MPEG 비디오에서 나타나는 여러 예측 형태의 움직임 벡터를 프레임 타입에 관계없이 단일 예측방향만을 갖도록 새롭게 추정하여 비디오 영상물의 분석에 직접적으로 활용하는 방안에 대해 제시하고 있다. 또한 재추정된 각 프레임에서의 움직임 벡터를 이용한 비디오 시퀀스 내에서의 객체 추출 및 추적 기법 등에 대해서도 새롭게 제안하였다. 제안된 알고리즘은 압축 영상에 대한 전체적인 복원과정을 거치지 않고, 압축 비디오 영역으로부터 쉽게 추출될 수 있는 매크로 블록 영역 상에서 수행되었으며, 실험 결과는 제안된 방법의 높은 성능을 잘 나타내어 주고 있다.