• Title/Summary/Keyword: Moving least squares method

Search Result 111, Processing Time 0.023 seconds

Performance Analysis of the Localization Compensation Algorithm for Moving Objects Using the Least-squares Method (최소자승법을 적용한 이동객체 위치인식 보정 알고리즘 성능분석)

  • Jung, Moo Kyung;Lee, Dong Myung
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.39C no.1
    • /
    • pp.9-16
    • /
    • 2014
  • The localization compensation algorithm for moving objects using the least-squares method is suggested and the performance of the algorithm is analyzed in this paper. The suggested compensation algorithm measures the distance values of the mobile object moving as a constant speed by the TMVS (TWR Minimum Value Selection) method, estimates the location of the mobile node by the trilateration scheme based on the values, and the estimated location is compensated using the least-squares method. By experiments, it is confirmed that the localization performance of the suggested compensation algorithm is largely improved to 58.84% and 40.28% compared with the conventional trilateration method in the scenario 1 and 2, respectively.

A Moving Least Squares weighting function for the Element-free Galerkin Method which almost fulfills essential boundary conditions

  • Most, Thomas;Bucher, Christian
    • Structural Engineering and Mechanics
    • /
    • v.21 no.3
    • /
    • pp.315-332
    • /
    • 2005
  • The Element-free Galerkin Method has become a very popular tool for the simulation of mechanical problems with moving boundaries. The internally applied Moving Least Squares interpolation uses in general Gaussian or cubic weighting functions and has compact support. Due to the approximative character of this interpolation the obtained shape functions do not fulfill the interpolation conditions, which causes additional numerical effort for the application of the boundary conditions. In this paper a new weighting function is presented, which was designed for meshless shape functions to fulfill these essential conditions with very high accuracy without any additional effort. Furthermore this interpolation gives much more stable results for varying size of the influence radius and for strongly distorted nodal arrangements than existing weighting function types.

The Least-Squares Meshfree Method for the Analysis of Rigid-Plastic Deformation (강소성 변형 해석을 위한 최소 제곱 무요소법)

  • 윤성기;권기찬
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.28 no.12
    • /
    • pp.2019-2031
    • /
    • 2004
  • The least-squares formulation for rigid-plasticity based on J$_2$-flow rule and infinitesimal theory and its meshfree implementation using moving least-squares approximation are proposed. In the least-squares formulation the squared residuals of the constitutive and equilibrium equations are minimized. Those residuals are represented in a form of first-order differential system using the velocity and stress components as independent variables. For the enforcement of the boundary and frictional contact conditions, penalty scheme is employed. Also the reshaping of nodal supports is introduced to avoid the difficulties due to the severe local deformation near the contact interface. The proposed least-squares meshfree method does not require any structure of extrinsic cells during the whole process of analysis. Through some numerical examples of metal forming processes, the validity and effectiveness of the method are investigated.

Mass Estimation of a Permanent Magnet Linear Synchronous Motor by the Least-Squares Algorithm (선형 영구자석 동기전동기의 최소자승법을 적용한 질량 추정)

  • Lee, Jin-Woo
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.11 no.2
    • /
    • pp.159-163
    • /
    • 2006
  • In order to tune the speed controller in the linear servo applications an accurate information of a mover mass including a load mass is always required. This paper suggests the mass estimation method of a permanent magnet linear synchronous motor(PMLSM) 4y using the parameter estimation method of Least-Squares algorithm. First, the deterministic autoregressive moving average(DARMA) model of the mechanical dynamic system is derived. Then the application of the Least-Squares algorithm shows that the mass can be accurately estimated both in the simulation results and in the experimental results.

A Generalized Finite Difference Method for Crack Analysis (일반화된 유한차분법을 이용한 균열해석)

  • Yoon, Young-Cheol;Kim, Dong-Jo;Lee, Sang-Ho
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2007.04a
    • /
    • pp.501-506
    • /
    • 2007
  • A generalized finite difference method for solving solid mechanics problems such as elasticity and crack problems is presented. The method is constructed in framework of Taylor polynomial based on the Moving Least Squares method and collocation scheme based on the diffuse derivative approximation. The governing equations are discretized into the difference equations and the nodal solutions are obtained by solving the system of equations. Numerical examples successfully demonstrate the robustness and efficiency of the proposed method.

  • PDF

Gas-liquid interface treatment in underwater explosion problem using moving least squares-smoothed particle hydrodynamics

  • Hashimoto, Gaku;Noguchi, Hirohisa
    • Interaction and multiscale mechanics
    • /
    • v.1 no.2
    • /
    • pp.251-278
    • /
    • 2008
  • In this study, we investigate the discontinuous-derivative treatment at the gas-liquid interface in underwater explosion (UNDEX) problems by using the Moving Least Squares-Smoothed Particle Hydrodynamics (MLS-SPH) method, which is known as one of the particle methods suitable for problems where large deformation and inhomogeneity occur in the whole domain. Because the numerical oscillation of pressure arises from derivative discontinuity in the UNDEX analysis using the standard SPH method, the MLS shape function with Discontinuous-derivative Basis Function (DBF) that is able to represent the derivative discontinuity of field function is utilized in the MLS-SPH formulation in order to suppress the nonphysical pressure oscillation. The effectiveness of the MLS-SPH with DBF is demonstrated in comparison with the standard SPH and conventional MLS-SPH though a shock tube problem and benchmark standard problems of UNDEX of a trinitrotoluene (TNT) charge.

Efficient Response Surface Modeling using Sensitivity (민감도를 이용한 효율적인 반응표면모델생성)

  • Wang, Se-Myung;Kim, Chwa-Il
    • Proceedings of the KSME Conference
    • /
    • 2003.11a
    • /
    • pp.1882-1887
    • /
    • 2003
  • The response surface method (RSM) became one of famous meta modeling techniques, however its approximation errors give designers several restrictions. Classical RSM uses the least squares method (LSM) to find the best fitting approximation models from the all given data. This paper discusses how to construct RSM efficiently and accurately using moving least squares method (MLSM) with sensitivity information. In this method, several parameters should be determined during the construction of RSM. Parametric study and optimization for these parameters are performed. Several difficulties during approximation processes are described and numerical examples are demonstrated to verify the efficiency of this method.

  • PDF

Mass Estimation of a Permanent Magnet Linear Synchronous Motor by the Least-Squares Algorithm (선형 영구자석 동기전동기의 최소자승법을 적용한 질량 추정)

  • Lee, Jin-Woo
    • Proceedings of the KIPE Conference
    • /
    • 2005.07a
    • /
    • pp.427-429
    • /
    • 2005
  • In order to tune the speed controller in the linear servo applications the accurate information of a mover mass including a load mass is always required. This paper suggests the mass estimation method of a permanent magnet linear synchronous motor(PMLSM) by using the parameter estimation method of Least-Squares algorithm. First, the deterministic autoregressive moving average(DARMA) model of the mechanical dynamic system is derived. The application of the Least-Squares algorithm shows that the mass can be accurately estimated both in the simulation results and in the experimental results.

  • PDF

The Meshfree Method Based on the Least-Squares Formulation for Elasto-Plasticity (탄소성 최소 제곱 수식화와 이를 이용한 무요소법)

  • Youn Sung-Kie;Kwon Kie-Chan
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.29 no.6 s.237
    • /
    • pp.860-875
    • /
    • 2005
  • A new meshfree method for the analysis of elasto-plastic deformations is presented. The method is based on the proposed first-order least-squares formulation, to which the moving least-squares approximation is applied. The least-squares formulation for the classical elasto-plasticity and its extension to an incrementally objective formulation for finite deformations are proposed. In the formulation, the equilibrium equation and flow rule are enforced in least-squares sense, while the hardening law and loading/unloading condition are enforced exactly at each integration point. The closest point projection method for the integration of rate-form constitutive equation is inherently involved in the formulation, and thus the radial-return mapping algorithm is not performed explicitly. Also the penalty schemes for the enforcement of the boundary and frictional contact conditions are devised. The main benefit of the proposed method is that any structure of cells is not used during the whole process of analysis. Through some numerical examples of metal forming processes, the validity and effectiveness of the method are presented.

Fast and Rigid 3D Shape Deformation Based on Moving Least Squares (이동 최소 자승법 기반의 빠르고 강체성이 유지되는 3차원 형상 변형 기법)

  • Lee, Jung;Kim, Chang-Hun
    • The KIPS Transactions:PartA
    • /
    • v.16A no.2
    • /
    • pp.61-68
    • /
    • 2009
  • We present a fast 3D shape deformation method that achieves smoothly deformed result by approximating a rigid transformation based on moving least squares (MLS). Our modified MLS formulation reduces the computation cost for computing the optimal transformation of each point and still keeps the rigidity of the deformed results. Even complex geometric shapes are easily, intuitively, and interactively deformed by manipulating point and ellipsoidal handles.