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Abstract 

The response surface method (RSM) became one of famous meta modeling techniques, however its 
approximation errors give designers several restrictions.  Classical RSM uses the least squares method 
(LSM) to find the best fitting approximation models from the all given data.  This paper discusses how to 
construct RSM efficiently and accurately using moving least squares method (MLSM) with sensitivity 
information.  In this method, several parameters should be determined during the construction of RSM.  
Parametric study and optimization for these parameters are performed.  Several difficulties during 
approximation processes are described and numerical examples are demonstrated to verify the efficiency of 
this method. 

기호설명 
RI Size of an approximation region 
swg Weighting factor for gradient error 
Lnew Newly defined least squares function 
 

1. Introduction 

The response surface method (RSM) (1) is a popular 
meta modeling technique to handle large and complex 
systems.  Since this method has several advantages, it is 
applied for many engineering applications these days.  
Because of approximation errors, however, this approach 
may not give accurate solutions.  The conventional 
RSM is based on the approximation of scattered position 
data, and it could be easily obtained using the least 
squares method (LSM), a global approximation method.  
The LSM is one of the major causes of large 
approximation errors in the conventional RSM.   

In this research, moving least squares method 
(MLSM) (2,3), a local approximation method, is adopted 
to reduce the approximation errors, and sensitivity 
information is included for the purpose of high efficiency 
and accuracy.  This paper mainly discusses how to 
construct RS models efficiently and accurately using the 
moving least squares method (MLSM) and sensitivity.  

In this proposed method, there are several parameters 
that can be selected by designer such as a size of local 
approximation region, weighting factor for gradient, and 
weighting functions.  These parameters determine the 
accuracy of the approximation.  In this research, the 
variations of the accuracy with respect to the change of 
the parameters are simulated and studied.  The 
correlation concept between the sampled data and the 
estimated data is adopted as a criterion of the accuracy.  
If a correlation coefficient is close to 1.0, the RSM is 
well fitted.  The criterion function is defined as the sum 
of two correlations for functions and gradients, and this 
value should be maximized.  During construction of 
RSM, the related parameters are optimized to get the best 
RS model using a global optimization procedure such as 
a genetic algorithm.  However, there exists several 
problems during the selection of parameters and those 
problems are described.  Finally, some numerical 
examples are given to verify the effectiveness of this 
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method.  

2. Moving Least Squares Method With 

Sensitivity Information 

2.1 Concept of Moving Least Squares Method 
An advanced method for regression is MLSM.  This 

method can be explained as a weighted LSM that has 
various weights with respect to the position of 
approximation.  Therefore, coefficients of a RS model 
are functions of the location and they should be 
calculated for each location.  This procedure is 
interpreted as a local approximation (4), and Fig. 1 
explains the main concept of LSM and MLSM. 

 
 
 
 
 
 
 
 
 
 

Fig. 1 Concept of LSM and MLSM 
 

In the Fig.1, dotted curve is from the classical LSM.  
For the scattered data, only one best approximation curve 
can be obtained from the LSM.  On the other hand in 
the case of MLSM, there exists an approximation 
function at a calculation point, which a designer wants to 
estimate, and there exists a different function at a 
different calculation point.  Numerical derivation will 
be shown in the following section. 

2.2 Numerical Expression of MLSM 
Suppose there are n-response values, yi, with respect 

to the changes of xij , which denote the ith observation of 
variable xj.  Assume that the error term ε in the model 
has ( ) ( ) 2,0 σεε == VarE  and that the { iε } are 
uncorrelated random variables. 

The following matrix form can express the 
relationship between the responses and the variables 

 

yy = Xβ + ε      (1) 

where y is a vector of the observations, X is a matrix of 
the level of the independent variables, β is a vector of the 
regression coefficients, and εy is a vector of random 
errors. 
 

A least squares function Ly(x) could be defined like 

following equation which is the sum of weighted errors. 
 

( ) ( )
n

T2 T
y i i

i 1

L w
=

ε =∑(x) = ε W(x)ε = y - Xβ W(x) y - Xβ  (2) 

 
Now, note that the diagonal weight matrix, W(x), is 

not a constant matrix in the MLSM.  In other words, 
W(x) is a function of location, and it can be obtained by 
weighting functions. There are several kinds of 
weighting functions like linear, quadratic, high order 
polynomials, and exponential functions.  For example, 
polynomial-weighting function is defined by 
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where x is a vector of approximation point, xI is a vector 
of Ith sampling (or experiment) point, d is the distance 
between x and xI. 

 
A weighting matrix, W(x), can be constructed using 

the weighting function in the diagonal terms.  And, 
minimizing Ly(x) gives coefficients of the RS model of 
the form 

 

( ) W(x)yXW(x)XXb(x) TT 1−
=   (4) 

 
Note that a procedure to calculate b(x) is a local 
approximation and “moving” process performs a global 
approximation through the whole design domain. 
 

2.3 Moving Least Squares Method with Sensitivity 
If the sensitivity (gradient) of each sampling point can 

be calculated efficiently (5), that sensitivity information 
can be used to construct RSM as well as function 
(response) data.  For sensitivity information yd

i,xj , the 
ith gradient of y with respect to xj, Eq.(1) leads the 
following relation.  

 
d
xj xj g xjy = T β + ε     (5) 
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represents gradient vector, and g xjε means vector of 

gradient error.   
 
So the total weighted sum of squared errors of the 
gradient data can be written as 

 

1 1 2 2 NDV NDV

T T T
g g x g g x g x g g x g x g g xL ...= + + +(x) ε W (x)ε ε W (x)ε ε W (x)ε

      (6) 
 

Wg(x)can be constructed from the similar manner with 
the function case, but a different type of weighting 
function can be adopted. 

Now, a new least squares function Lnew(x), which 
contains the errors of gradient data as well as those of 
position data, can be defined by 

 
new g y g g

NDV
T T

g y y g g xj g g xj
j 1

L (1 sw )L (sw )L

(1 sw ) (sw )
=

= − +

= − + ∑

(x) (x) (x)

ε W(x)ε ε W (x)ε
(7)

where swg is a scale factor (or weighting factor) for 
gradient errors. 

 
In order to minimize the new least squares function, 
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Substitution and rearrangement give 
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Simplifying the above equation represents 

 
A(x)b = c(x)     (10) 
 

And finally, the coefficients of the response surface 
model can be obtained of the form 

 
1−b(x) = A(x) c(x)     (11) 

 
Through the sequences explained, a RS model that 
considers the gradient data as well as the function data 
can be obtained.  Authors denote this RSM as 
sensitivity-based response surface model (SRSM).  
Note that the coefficients from the above sequences 
depend on the approximation location x.  To verify the 
effectiveness of this proposed method, some examples 
will be demonstrated. 

 

3. Parametric Study for Moving Least 

Squares Method with Sensitivity 

3.1 Necessity of Parametric Study and Correlation 
Coefficient 

When the sensitivity-based RSM is constructed, there 
are several parameters that can be selected by a designer 
such as RS model function (basis), type of weighting 
functions, size of an approximation region (RI), and 
weighting factor for gradient (swg).  These parameters 
are very important because they affect accuracy of the 
approximation.  Parametric study is for checking how 
much these parameters affect a global accuracy of the 
approximation.  Especially, the size of approximation 
(RI) and weighting factor for gradient (swg) are the most 
important, and parametric studies of those parameters are 
performed. 

As a measure of the accuracy for RSM, correlation 
coefficient is adopted.  For two random variables X1, 
X2, a correlation coefficient is calculated by Eq.(14) 

 
( )( ){ }

212.121

2121

/

21

σσXXXX

XX

Rr

mXmXER

=

−−=   (12) 

where RX1 X2 is a covariance of X1 and X2, mi is the mean 
of Xi, σi is the standard deviation of Xi, and rX1 X2 is a 
correlation coefficient of X1 and X2. 

 
The absolute value of the correlation coefficient can 

vary from 0 to 1.  If it is 0, X1 and X2 are uncorrelated.  
If it is 1, X1 and X2 are perfectly correlated.  In this 
research, a measure of the accuracy is the correlation 
coefficients of sampled data and estimated data from 
RSM.  

There are several criteria for accuracy.  An important 
reason why this correlation concept is adopted is a 
normalized (or equivalent) comparison between response 
error and gradient error.  Since response and sensitivity 
values have different dimensions, direct comparison of 
those errors is impossible.  However, by using the 
correlation concept, a normalized accuracy from 0 to 1 
makes possible to compare the both errors. 

Parametric studies for several mathematical functions 
are performed for several different conditions, and a few 
representative results will be shown in the following 
section.  The following two sections show the results of 
parametric studies for a Rosenbrock test function, which 
is defined by 

 
2 2 2

1 2 1( ) 100( ) (1 )f x x x= − + −x   (13) 
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Each figure has 4 curves that represent 
 

-Cor_Resp : Correlation coefficient of response 
values(15pts by LHC) for construction of RSM 
-Cor_Sens : Correlation coefficient of sensitivity 
values(15pts by LHC) for construction of RSM 
-(Cr+Cs)/2 : (Cor_Resp + Cor_Sens)/2 
-Cor_TestPt : Correlation coefficient of response 
values(225 pts) for a test of global accuracy. 
 

Cor_Resp and Cor_Sens are from the sampled data for 
construction of RSM, and Cor_TestPt is from the testing 
points that are many enough to represent a global 
accuracy.  LHC means Latin Hypercube design. 
 

3.2 Parametric Study for swg 
The first parameter to study is swg.  The following 

Fig.2 shows variations of correlation coefficient with 
respect to variations of swg.  Since the trends of 
correlations are quite different for different weighting 
functions and other different conditions, a certain trend is 
not always the best.  However, a few representative 
trends are found from the experiences. 
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Fig.2 Correlation with respect to swg 

 
Fig.2 is one of the general trends for swg.  Larger swg 

(closer to 1) causes larger Cor_Sens and smaller 
Cor_Resp, because larger swg tries to minimize gradient 
errors more in Eq.(7).  The important behavior is that 
the trend of (Cr+Cs)/2 is the most close to the trend of 
Cor_TestPt.  This means that a maximum (Cr+Cs)/2 is 
the most close to the maximum global accuracy of RSM. 

During the parametric study for swg, swg should larger 
than 0 and smaller than 1.  0 of swg means No 
sensitivity case (MLSM only) and 1 of swg means 
physically impossible case (no response data). 
 

3.3 Parametric Study for RI 
RI, a size of the local approximation region, is the 

second parameter to study.  A small RI makes an RSM 
approximation close to an interpolation which the RSM 

passes all sampled points.  In this case, RSM can be 
very noisy and this noise phenomenon can lose a filtering 
effect which is one of the major advantages of RSM.  
Additionally, even though the number of data is not less 
than a minimum required number within an local 
approximation region that is determined by RI, if RI is too 
small, a matrix A(x) in Eq.(11) can be ill-conditioned.  
Eventually, ill-conditioned matrix operation causes very 
poor estimations.   On the other hand, a large RI makes 
the MLSM (local approximation) close to a conventional 
RSM (global approximation).  Since RI can affect the 
accuracy of approximation greatly, RI is a very important 
parameter for the local approximation. 

Figure 3 shows representative results of parametric 
studies for RI.  Minimum possible RI leads maximum 
Cor_Resp, but generally that doesn’t mean maximum 
global accuracy.  As Fig.3 shows, consideration of both 
Cor_Resp and Cor_Sens can give good approximation 
because the profiles of (Cr+Cs)/2 and Cor_TestPt show a 
similar trend.  Therefore, we have to maximize not 
Cor_Resp, but Cr+Cs in order to get a good RSM. 

In other case, all 4 profiles can have the same trends.  
This result is good for approximation, because we don’t 
have to worry about the accuracy criteria in this case.  
However, we have no idea whether the accuracy profiles 
will be like this or Fig.3. 
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Fig.3 Correlation with respect to RI 
 

4. Optimization of Parameters for RS 

Modeling 

During the construction of RSM, these parameters are 
optimized for the best RS modeling from an optimization 
procedure.  Since a discontinuity problem can be 
occurred during this optimization procedure, a genetic 
algorithm (6) is adopted.  One of the representative 
objectives of this parametric optimization is 
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singular)benotshould(Matrix
 dataenoughcontainsdomainionApproximat..s

Corr_Sens Corr_Respmaximize

A(x)
t

+
 (14) 

 

5. Difficulties During the Approximation 

There are several difficulties during the approximation.  

5.1 Estimation at Near Boundary Points 
At near a boundary, rack of the number of data within 

a local approximation region makes estimation poor or 
fails.  Resizable approximation region or additional data 
near the boundary can solve this problem.  

 

5.2 Near-Singular Problem 
If a matrix A(x) in Eq.(10) is not singular but ill-

conditioned, RSM estimation can be very poor.  During 
matrix operations for calculating coefficients of RSM, an 
inverse matrix A(x)-1 in Eq.(11) becomes too sensitive, 
and this sensitive inverse operation cause the problem.  
In this research, a reciprocal condition number (Rcond) 
is adopted as a criterion to check the condition of A(x).  
If a matrix A is well conditioned, Rcond(A) is near 1.  
If a matrix A is badly conditioned, Rcond (A) is near 0.  
For examples, Rcond of an identity matrix is 1, and 
Rcond of a singular matrix is 0. 

In this research, if the reciprocal condition number 
(Rcond) of A(x) is smaller than a certain predefined 
value (for example, 0.0001), the parametric optimizer 
considers A(x) singular and finds larger Ri. 

 

5.3 Selection of an Objective of Parametric 
Optimization 

As the parametric study shows, the maximum of 
(Corr_Resp+Corr_Sens) doesn’t guarantee maximum 

approximation accuracy.  Therefore, a good selection of 
objective is important.  Some possible alternatives are 

 
Maximize Cor_Sens s.t.Cor_Resp > Cor_Target(a given value) 
Maximize Cor_Resp + Cor_Sens – (Cor_Resp - Cor_Sens)^2  
Minimize 1/(Cor_Resp + Cor_Sens) + |Cor_Resp - Cor_Sens| 

 
However, more research is required to find other better 

objectives that can represent the globally maximum 
accuracy. 
 

6. Numerical Examples 

6.1 Function Test 1 
The first mathematical example is Rosenbrock 

function with 2 variables famous for Banana function.  
As the contour plot shows in Fig.4 (a), this function has a 
long, narrow, parabolic shaped flat valley.  Evenly 
distributed 16 points are sampled for experiments, and 
100 points are selected for testing the accuracy of RSMs.  
Sensitivities at each sampling points are obtained 
analytically.   

The Figs.4 (b~d) show several RS models constructed 
using different methods; the classical LSM, MLSM only, 
and MLSM with sensitivity performing parametric 
optimization, respectively.  A genetic algorithm is used 
for the parametric optimization in the case of (d), and the 
objective is Eq.(14).  Reciprocal condition number is 
also used to prevent a near-singular problem mentioned 
in the previous chapter. 

In graphical point of view, Fig.4 (d) is very close to 
the original function and its contour plot shows the V-
shaped valley.  In numerical accuracy, case (d) also 
gave the most accurate solution. 
 

 

(a) Original Function   b) Classical LSM     (c) MLSM     (d) MLSM with Sensitivity 
Fig.4 Function and contour Plots for RSMs using Different Methods 
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6.2 Function Test 2 
The second test function is 2D six-hump camel back 

function, which is defined as 
 

2 4 2 2 2
1 1 1 1 2 2 2( ) (4 2.1 / 3) ( 4 4 )f x x x x x x x= − + + + − +x  (15) 

Where 1 22 2 1 1x and x− ≤ ≤ − ≤ ≤  
 
This function has 4 local optimums and 2 global 

optimums within the bounded region as shown in Fig.5 
(a).   

Evenly distributed sixteen points are sampled for 
experiments and one hundred points are selected for 
testing the accuracy of the RSM.  Fig.5 (b~c) show the 
results of construction of RSM according to different 
methods, and graphically the case(c) can successfully 
describe the 6 optimum positions.  The both cases of 
LSM and MLSM (without sensitivity) gave the same 
results. 
 

7. Conclusions 

The RSM became one of famous approximation and 
optimization techniques for complicate systems, however 
its approximation error is the major drawback of this 
approach.  This paper mainly discussed how to 
construct RSM efficiently and accurately using 
sensitivity when the exact sensitivities were available.  
During the approximation using the moving least squares 
method (MLSM) with sensitivity information, several 
parameters should be determined carefully.  Parametric 
study and optimization for these parameters, a weighting 
factor for gradient and size of local approximation region, 
were performed. Correlation coefficient and reciprocal 
condition number were adopted for better accuracy 
criteria, and a genetic algorithm was used for the 

parametric optimization.  Several difficulties during 
applying the proposed method were described and 
numerical examples were demonstrated.  From those 
examples, the proposed methods gave not only accurate 
but also efficient RS Models. 
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(a) Original Function    (b) Classical LSM or MLSM  (c) MLSM with Sensitivity 

Fig.5 Function and contour Plots for RSMs using Different Methods 
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