• 제목/요약/키워드: Moving disturbance wave

검색결과 7건 처리시간 0.022초

Theoretical Flow Instability of the Karman Boundary Layer

  • Hwang, Young-Kyu;Lee, Yun-Yong
    • Journal of Mechanical Science and Technology
    • /
    • 제14권3호
    • /
    • pp.358-368
    • /
    • 2000
  • The hydrodynamic stability of the Karman boundary-layer flow due to a rotating disk has been numerically investigated for moving disturbance waves. The disturbed flow over a rotating disk can lead to transition at much lower Re than that of the well-known Type I instability mode. This early transition is due to the excitation of the Type II instability mode of moving disturbances. Presented are the neutral stability results concerning the two instability modes by solving new linear stability equations reformulated not only by considering whole convective terms but by correcting some errors in the previous stability equations. The reformulated stability equations are slightly different with the previous ones. However, the present neutral stability results are considerably different with the previously known ones. It is found that the flow is always stable for a disturbance whose dimensionless wave number k is greater than 0.75.

  • PDF

회전원판 유동의 제2형 불안정성 공간증폭에 관한 이론적 연구 (A study of the spatial amplification of the Type II instability for the Rotating-disk flow)

  • 이윤용;이광원;황영규
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2001년도 추계학술대회논문집B
    • /
    • pp.481-486
    • /
    • 2001
  • The hydrodynamic instability of the three-dimensional boundary layer on a rotating disk introduces a periodic modulation of the mean flow in the form of stationary cross flow vortices. Detailed numerical values of the growth rates, neutral curves and other characteristics have been calculated for the Type II-instabilities. Presented are the neutral stability results concerning the two instability modes by solving new linear stability equations reformulated not only by considering whole convective terms but by correcting some errors in the previous stability equations. The present stability results are agree with the previously known ones within reasonable limit. The spatial amplification contours have been calculated for the moving disturbance wave, whose azimuth angle is between $\varepsilon=-10^{\circ}$ and $-20^{\circ}$. The transition flow of the moving disturbance wave will be developed at $\varepsilon=-15^{\circ}$ and Re=352 corresponding at the growth rates n = 5.8 from the spatial amplification contours.

  • PDF

수중물체의 운동에 의한 장수파의 생성 (Generation of Long Water Waves by Moving Submerged Bodies)

  • 이승준
    • 대한조선학회지
    • /
    • 제24권2호
    • /
    • pp.55-61
    • /
    • 1987
  • The wave system due to a moving submerged body is investigated both theoretically and numerically. Boussinesq equation, which is derived under the assumption that the effects of nonlinearity and wave dispersion are of the same order, is generalized to take the forcing agency into account. Furthermore, under the more restrive assumption that the disturbance is of higher order, inhomogeneous Korteweg-de Vries equation is derived. These equations are solved numerically to obtain the generated wave system and the wave-making resistance. These results are compared with those given by the linear theory.

  • PDF

The Flow Instability Over the Infinite Rotating Disk

  • Lee, Yun-Yong;Hwang, Young-Kyu;Lee, Kwang-Won
    • Journal of Mechanical Science and Technology
    • /
    • 제17권9호
    • /
    • pp.1388-1396
    • /
    • 2003
  • The hydrodynamic instability of the three-dimensional boundary layer on a rotating disk introduces a periodic modulation of the mean flow in the form of stationary cross flow vortices. The instability labeled Type II by Faller occurs first at lower Reynolds number than that of well known Type I instability. Detailed numerical values of the amplification rates, neutral curves and other characteristics of the two instabilities have been calculated over a wide range of parameters. Presented are the neutral stability results concerning the two instability modes by solving the appropriate linear stability equations reformulated not only by considering whole convective terms but also by correcting some errors in the previous stability equations. The present stability results agree with the previously known ones within reasonable limit. Consequently, the flow is found to be always stable for a disturbance whose dimensionless wave number is greater than 0.75. Some spatial amplification contours have been computed for the stationary disturbance wave, whose azimuth angle $\varepsilon$= 11.29$^{\circ}$ to 15$^{\circ}$ and for the moving disturbance wave, whose azimuth angle $\varepsilon$ = 12.5$^{\circ}$ to 15$^{\circ}$. Also, some temporal amplification contours have been computed for the stationary disturbance wave, whose azimuth angle $\varepsilon$= 11.29$^{\circ}$ to 15$^{\circ}$ and for the moving disturbance wave, whose azimuth angle $\varepsilon$= 12$^{\circ}$ to 15$^{\circ}$. The flow instability was observed by using a white titanium tetrachloride gas over rotating disk system. When the numerical results are compared to the present experimental data, the numerical results agree quantitatively, indicating the existence of the selective frequency mechanism.

$K{\acute{a}}rm{\acute{a}}n$ 경계층 유동의 공간증폭에 관한 이론적 연구 (A study of the spatial amplification of the $K{\acute{a}}rm{\acute{a}}n$ boundary-layer)

  • 황영규;이윤용
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2000년도 추계학술대회논문집B
    • /
    • pp.585-590
    • /
    • 2000
  • The hydrodynamic instability of the three-dimensional boundary layer on a rotating disk introduces a periodic modulation of the mean flow in the form of stationary cross flow vortices. Detailed numerical values of the growth rates, neutral curves and other characteristics of the two instabilities have been calculated over a wide range of parameters. Presented are the neutral stability results concerning the two instability modes by solving new linear stability equations reformulated not only by considering whole convective terms but by correcting some errors in the previous stability equations. The present stability results are agree with the previously known ones within reasonable limit. The flow is found to be always stable for a disturbance whose dimensionless wave number at Re=1200 is greater than 0.75. Also, the spatial amplification contours have been calculated for the moving disturbance wave, whose azimuth angle is between ${\varepsilon}=15^{\circ}$ and $12.5^{\circ}$.

  • PDF

기계평면시일에서 온도전파를 위한 파속도의 이론적해석 (ANALYSIS OF WAVE VELOCITY FOR TEMPERATURE PROPERGATION IN A MECHANICAL FACE SEAL)

  • 김청균
    • 한국윤활학회:학술대회논문집
    • /
    • 한국윤활학회 1987년도 제5회 학술강연회초록집
    • /
    • pp.50-56
    • /
    • 1987
  • A mechanical face seal is most commonly used to seal liquids and gases at various speeds, pressures and temperatures. The primary seal ring is in sliding contact with the seal seat and as a result heat in the vicinity of the interface is generated. Local temperatures at points along the circumferential direction will fluctuate as asperities on the surfaces pass. This kind of fluctuation of temperature has been investigated to take place. This may lead to the hot spots phenomenon between the contacting asperities. Sibley and Allen showed photographic evidence of systemically moving hot spots in the contact zone. The appearance of such a temperature disturbance has been attributed to a kind of thermoelastic instabilities between two surfaces: This involves a feedback loop which comprises localized elevation of frictional heating, resultant localized thermal bulding, localized pressure increase as the result of the bulging and futher elevation of frictional heating as the result of the pressure increase. The heating of hot spots will be continued until the expanded material due to the frictional heating is worn off. Therefore to predict the speed of temperature propagation into the body is essential to the analysis of heat transfer on the edge of the seal.

  • PDF

이중 유벽 사이의 기름과 물의 계면의 거동 (Behavior of Oil-Water Interface between Tandem Fences)

  • 강관형;이정묵
    • 한국해양환경ㆍ에너지학회지
    • /
    • 제2권2호
    • /
    • pp.70-77
    • /
    • 1999
  • 와류에 의한 이중 유벽 사이에 가두어진 기름층과 물의 계면의 교란에 대하여 고찰하였다. 와류는 전부 유벽의 끝에서 발생되는 것으로 간주하였다. 유동장의 해석을 위하여 포텐셜 유동 가정하에 계면을 와 특이점 분포면(vortex sheet)으로 나타내었다. 계면의 형상은 계면에 유한개의 가상의 입자를 설정한 후 그 위치를 추적하여 추하였다. 입자의 속도는 와 분포면에 의해서 유발되는 속도를 Biot-Savart 적분을 통해 구하고 여기에 이동하는 점와류(point vortex)에서 유발되는 속도를 합하여 구하였다. 시간에 대한 와 분포면상의 와도의 변화는 계면에서의 와도 방정식을 해석하여 구하였다. 여러 조건하에서 계산된 결과를 바탕으로 상당한 파고의 계면파가 전부 유벽 하단에서 발생되는 와류에 의하여 생성될 수 있음을 입증하였다.

  • PDF