• Title/Summary/Keyword: Moving behavior

Search Result 686, Processing Time 0.021 seconds

Single Bubble Dynamic Behavior in AL2O3/H2O Nanofluid on Downward-Facing Heating Surface

  • Wang, Yun;Wu, Junmei
    • Nuclear Engineering and Technology
    • /
    • v.48 no.4
    • /
    • pp.915-924
    • /
    • 2016
  • After a severe accident to the nuclear reactor, the in-vessel retention strategy is a key way to prevent the leakage of radioactive material. Nanofluid is a steady suspension used to improve heat-transfer characteristics of working fluids, formed by adding solid particles with diameters below 100nm to the base fluids, and its thermal physical properties and heat-transfer characteristics are much different from the conventional working fluids. Thus, nanofluids with appropriate nanoparticle type and volume concentration can enhance the heat-transfer process. In this study, the moving particle semi-implicit method-meshless advection using flow-directional local grid method is used to simulate the bubble growth, departure, and sliding on the downward-facing heating surface in pure water and nanofluid (1.0 vol.% $Al_2O_3/H_2O$) flow boiling processes; additionally, the bubble critical departure angle and sliding characteristics and their influence are also investigated. The results indicate that the bubble in nanofluid departs from the heating surface more easily and the critical departure inclined angle of nanofluid is greater than that of pure water. In addition, the influence of nanofluid on bubble sliding is not significant compared with pure water.

Posture Change Recognition System using Visual Information (영상정보에 의한 자세변화 감지 시스템)

  • Jo, Sung-Won;Han, Kyong-Ho
    • Journal of IKEEE
    • /
    • v.14 no.4
    • /
    • pp.291-296
    • /
    • 2010
  • This paper handles, pitching and rolling posture change detection using the visual image changes due to the road slope conditions. When the moving vehicle is slanted to a direction, the objects in the visual images of the vehicle are moving to up or down and right or left. This is similar to the human's balancing behavior depending on the visual image change detection as well as the vestibular organs and semicircular canal in the ear. The proposes method shows the visual image through the camera can be used for the image information itself and for the posture change detection through the experiments.

Thermal-flow analysis of a simple LTD (Low-Temperature-Differential) heat engine

  • Kim, Yeongmin;Kim, Won Sik;Jung, Haejun;Chen, Kuan;Chun, Wongee
    • Journal of Energy Engineering
    • /
    • v.26 no.1
    • /
    • pp.9-22
    • /
    • 2017
  • A combined thermal and flow analysis was carried out to study the behavior and performance of a small, commercial LTD (Low-Temperature-Differential) heat engine. Laminar-flow solutions for annulus and channel flows were employed to estimate the viscous drags on the piston and the displacer and the pressure difference across the displacer. Temperature correction factors were introduced to account for the departure from the ideal heat transfer processes. The analysis results indicate that the work required to overcome the viscous drags on engine moving parts and to move the displacer is much smaller than the moving-boundary work produced by the power piston for temperature differentials in the neighborhood of $20^{\circ}C$ and engine speeds below 10 RPS. A comparison with experimental data reveals large degradations from the ideal heat transfer processes. Thus, heat-transfer devices inside the displacer cylinder are recommended.

Dynamic Analysis of Constrained Mechanical System Moving on a Flexible Beam Structure(I) : General Approach (유연한 보 구조물 위를 이동하는 구속 기계계의 동력학 해석(I) : 일반적인 접근법)

  • Park, Chan-Jong;Park, Tae-Won
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.17 no.11
    • /
    • pp.165-175
    • /
    • 2000
  • In recent years, it becomes a very important issue to consider the mechanical systems such as high-speed vehicles and railway trains moving on elastic beam structures. In this paper, a general approach, which can predict the dynamic behavior of constrained mechanical system and elastic beam structure, is proposed. Also, various supporting conditions of a foundation support are considered for the elastic beam structures. The elastic structure is assumed to be a nonuniform and linear Bernoulli-Euler beam with proportional damping effect. Combined Differential-Algebraic Equations of motion are derived using multibody dynamics theory and Finite Element Method. The proposed equations of motion can be solved numerically using generalizd coordinate partitioning method and Predictor-Corrector algorithm, which is an implicit multi-step integration method.

  • PDF

A Study on Response Analysis of 6-DOF Pneumatic Vibration Isolation Table Loaded by Transient Movements of Carriage on It (상판 위 질량의 순간적인 움직임에 의해 가진되는 6-자유도 공압제진대의 진동 응답에 대한 연구)

  • Sun, Jong-Oh;Shin, Yun-Ho;Kim, Kwang-Joon
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.17 no.6 s.123
    • /
    • pp.515-523
    • /
    • 2007
  • As environmental vibration requirements on precision equipments get more stringent, use of pneumatic vibration isolators becomes more crucial and, hence, their dynamic performance needs to be further improved. Dynamic behavior of those pneumatic vibration Isolation tables is very important to both manufacturer and customer as performance specifications. Together with conventional transmissibility, transient response characteristics are another critical performance index especially when movements of components, e.g., x-y tables, of the precision equipments are very dynamic. In this paper, analysis on transient response of a pneumatic vibration isolation table loaded by a mass moving on it is presented. This is a conventional dynamics problem on a rigid body with 6 degree of freedom and a mass with another degree of freedom. How to obtain transient responses of the isolation table is described when the movements of the mass are prescribed relative to the table.

Using a Lagrangian-Lagrangian approach for studying flow behavior inside a bubble column

  • YoungWoo Son;Cheol-O Ahn;SangHwan Lee
    • Nuclear Engineering and Technology
    • /
    • v.55 no.12
    • /
    • pp.4395-4407
    • /
    • 2023
  • Bubble columns are widely encountered in several industries, especially in the field of nuclear safety. The Eulerian-Eulerian and the Eulerian-Lagrangian methods are commonly used to investigate bubble columns. Eulerian approaches require additional tasks such as strict volume conservation at the interface and a predefined well-structured grid. In contrast, the Lagrangian approach can be easily implemented. Hence, we introduce a fully Lagrangian approach for the simulation of bubble columns using the discrete bubble model (DBM) and moving particle semi-implicit (MPS) methods. Additionally, we propose a rigorous method to estimate the volume fraction accurately, and verified it through experimental data and analytical results. The MPS method was compared with the experimental data of Dambreak. The DBM was verified by analyzing the terminal velocity of a single bubble for each bubble size. It agreed with the analytical results for each of the four drag correlations. Additionally, the improved method for calculating the volume fraction showed agreement with the Ergun equation for the pressure drop in a packed bed. The implemented MPS-DBM was used to simulate the bubble column, and the results were compared with the experimental results. We demonstrated that the MPS-DBM was in quantitative agreement with the experimental data.

Moving boundary condition for simulation of inundation (범람 모의를 위한 이동경계조건)

  • Lin, Tae-hoon;Lee, Bong-Hee;Cho, Dae-Hee;Cho, Yong-Sik
    • Journal of Korea Water Resources Association
    • /
    • v.36 no.6
    • /
    • pp.937-947
    • /
    • 2003
  • A shoreline, which has no the water depth, moves continuously as waves rise up and recede. Therefore, a special boundary treatment is required to track properly the movements of the shoreline in numerical modeling of the behavior of tsunamis or tides near a coastal zone. In this study, convective terms in nonlinear shallow-water equations are discretized explicitly by using a second-order upwind scheme to describe a moving shoreline more accurately. An oscillatory flow motion in a circular paraboloidal basin has been employed to validate the performance of the developed numerical model. Computed results of instantaneous free surface displacements are compared with those of analytical solutions and existing numerical solutions. The run-up heights in the vicinity of a circular island have also been calculated and obtained numerical results have been shown against available laboratory measurements. A good agreement has been observed.

Intrinsically Extended Moving Least Squares Finite Difference Method for Potential Problems with Interfacial Boundary (계면경계를 갖는 포텐셜 문제 해석을 위한 내적확장된 이동최소제곱 유한차분법)

  • Yoon, Young-Cheol;Lee, Sang-Ho
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.22 no.5
    • /
    • pp.411-420
    • /
    • 2009
  • This study presents an extended finite difference method based on moving least squares(MLS) method for solving potential problems with interfacial boundary. The approximation constructed from the MLS Taylor polynomial is modified by inserting of wedge functions for the interface modeling. Governing equations are node-wisely discretized without involving element or grid; immersion of interfacial condition into the approximation circumvents numerical difficulties owing to geometrical modeling of interface. Interface modeling introduces no additional unknowns in the system of equations but makes the system overdetermined. So, the numbers of unknowns and equations are equalized by the symmetrization of the stiffness matrix. Increase in computational effort is the trade-off for ease of interface modeling. Numerical results clearly show that the developed numerical scheme sharply describes the wedge behavior as well as jumps and efficiently and accurately solves potential problems with interface.

Verified 20-car Model of High-speed Train for Dynamic Response Analysis of Railway Bridges (검증된 고속철도 차량의 20량편성 정밀모형에 의한 철도교량의 동적응답 분석)

  • 최성락;이용선;김상효;김병석
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.15 no.4
    • /
    • pp.693-702
    • /
    • 2002
  • The aim of this study is to develop a 3-dimensional dynamic analysis model, capable of considering the interaction between vehicles and bridges more accurately. The dynamic analysis model is developed with the high-speed train (KTX) and a 2-span continuous prestressed concrete box girder bridge with a double track. The 20-car model is developed using the moving vehicle model for the regular trainset. Three-dimensional frame elements are used for the bridge model. Using the developed models, a dynamic behavior analysis program is coded. The analytical results are compared with the dynamic field test results and found to be valid to yield quite accurate dynamic responses. Based on the results of this study, the hybrid model, made up of the moving vehicle model for the heaviest power car and the moving force model for the other cars, is quite simple and effective without loosing the accuracy that much. Under the coincidence condition of two trains traveling with resonance velocity in the opposite directions, it is necessary to check not only the dynamic responses of the bridge with one-way traffic but those with two- way coincidence.

Delamination Analysis of Orthotropic Laminated Plates Using Moving Nodal Modes (이동절점모드를 사용한 직교이방성 적층평판의 층간분리해석)

  • Ahn, Jae-Seok
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.25 no.4
    • /
    • pp.293-300
    • /
    • 2012
  • In this study, the delamination analysis has been implemented to investigate the initiation and propagation of crack in composite laminates composed of orthotropic materials. A simple modeling was achieved by moving nodal technique without re-meshing work when crack propagation occurred. This paper aims at achieving two specific objectives. The first is to suggest a very simple modeling scheme compared with those applied to conventional h-FEM based models. To verify the performance of the proposed model, analysis of double cantilever beams with composite materials was implemented and then the results were compared with reference values in literatures. The second one is to investigate the behavior of interior delamination problems using the proposed model. To complete these objectives, the full-discrete-layer model based on Lobatto shape functions was considered and energy release rates were calculated using three-dimensional VCCT(virtual crack closure technique) based on linear elastic fracture mechanics.