• Title/Summary/Keyword: Moving System

Search Result 4,754, Processing Time 0.041 seconds

Real-time Implementation of a DSP System for Moving Object Tracking Based on Motion Energy (움직임 에너지를 이용한 동적 물체 추적 시스템의 실시간 구현)

  • Ryu, Sung-Hee;Kim, Jin-Yul
    • Proceedings of the KIEE Conference
    • /
    • 2001.11c
    • /
    • pp.365-368
    • /
    • 2001
  • This work describes a real-time method, based on motion energy detection, for detecting and tracking moving object in the consecutive image sequences. The motion of moving objects is detected by taking the difference of the two consecutive image frames. In addition an edge information of the current image is utilized in order to further increase the accuracy of detection. We can track the moving objects continuously by detecting the motion of objects from the sequence of image frames. A prototype system has been implemented using a TI TMS320C6201 EVM fixed-point DSP board, which can successfully track a moving human in real-time.

  • PDF

Tracking Robot Control of 2D Moving Target by a Robot Vision

  • Kim, Dong-Hwan;Jeon, Byoung-Joon;Hong, Young-Ho
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2002.10a
    • /
    • pp.99.4-99
    • /
    • 2002
  • A two-dimensional moving target is necessarily captured by a 5 dot robot system using a robot vision technique. Here, a robot vision system with a visual skill so that it can take information for a moving target or object, specially two dimensionally moving, is introduced and its algorithm and control strategy are presented associated with it. The tracking algorithm is proposed and its performance is verified by experiment. The camera first captures the object, then it captures again after certain second. The position difference generates the horizontal and vertical velocities of the moving target, hence the final destination is estimated at gripping line. At the same time, the robot s...

  • PDF

FE Analysis of electromechanical device including moving part using LSM (LSM을 이용한 이동체를 포함하는 전기기기의 유한요소 해석)

  • Baek, Myung-Ki;Sung, Tan-Il;Choi, Yoon-Seok;Kim, Young-Sun;Park, Il-Han
    • Proceedings of the KIEE Conference
    • /
    • 2008.07a
    • /
    • pp.796-797
    • /
    • 2008
  • This paper presents a coupling scheme of LSM(Level Set Method) and Poisson's equation to analyze the dynamic performance of electromagnetic system with moving parts. Remeshing process is necessary to analyze the dynamics of moving object using finite element method. LSM is useful for analysis of moving objects or propagating models in time varying system. In this paper, we proposed the material setting technique of mover using level set function. To validate the algorithm, we adopted the simple hinged electromagnet model with moving arm. The results of simulation are reasonable as expect.

  • PDF

Prediction and Avoidance of the Moving Obstacles Using the Kalman Filters and Fuzzy Algorithm (칼만 필터와 퍼지 알고리즘을 이용한 이동 장애물의 위치예측 및 회피에 관한 연구)

  • Joung Won-Sang;Choi Young-Kiu;Lee Sang-Hyuk
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.54 no.5
    • /
    • pp.307-314
    • /
    • 2005
  • In this paper, we propose a predictive system for the avoidance of the moving obstacle. In the dynamic environment, robots should travel to the target point without collision with the moving obstacle. For this, we need the prediction of the position and velocity of the moving obstacle. So, we use the Kalman filer algorithm for the prediction. And for the application of the Kalman filter algorithm about the real time travel, we obtain the position of the obstacle which has the future time using Fuzzy system. Through the computer simulation studies, we show the effectiveness of the proposed navigational algorithm for autonomous mobile robots.

The Moving Object Gripping Using Vision Systems (비젼 시스템을 이용한 이동 물체의 그립핑)

  • Cho, Ki-Heum;Choi, Byong-Joon;Jeon, Jae-Hyun;Hong, Suk-Kyo
    • Proceedings of the KIEE Conference
    • /
    • 1998.07g
    • /
    • pp.2357-2359
    • /
    • 1998
  • This paper proposes trajectory tracking of the moving object based on one camera vision system. And, this system proposes a method which robot manipulator grips moving object and predicts coordinate of moving objcet. The trajectory tracking and position coordinate are computed by vision data acquired to camera. Robot manipulator tracks and grips moving object by vision data. The proposed vision systems use a algorithm to do real-time processing.

  • PDF

A Novel Fractal-Space Multiplexing using Moving Window and Double-Focusing Lens (움직이는 창과 이중 초점 렌즈를 이용한 프랙탈-공간 다중화 기법)

  • Kim, Soo-Gil
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.16 no.6
    • /
    • pp.1-6
    • /
    • 2002
  • We propose a novel fractal-space multiplexing holographic memory system using moving window and double-focusing lens, which can eliminate crosstalk due to two neighboring moving window rows in the vertical direction of the conventional moving window holographic memory system, and demonstrated its feasibility through optical experiments.

Architecture of Collision Avoidance System between Bicycle and Moving Object by Using V2V(X) Network (V2V(X) 네트워크를 이용한 자전거와 이동 객체간 충돌 회피 시스템 구조)

  • Gu, Bon-gen
    • Journal of Platform Technology
    • /
    • v.6 no.3
    • /
    • pp.10-16
    • /
    • 2018
  • Bicycle shares road with various traffic elements like car, pedestrian and, the number of bicycle user is increasing in recent. Therefore, bicycle accident continuously increases. Especially in complex traffic environment, bicycle accident which collides with moving object such as pedestrian occupies many parts of bicycle accident in the reason that the cyclist does not recognize moving object. In this paper, to reduce or avoid the bicycle accident, we propose the architecture of bicycle collision avoidance system in which that cyclist can get the information about moving object by connecting bicycle to network of vehicles and does some action for avoiding collision. In our architecture, when traffic element such as car recognizes moving object, it decides the moving direction of object, and transfers information about moving direction via vehicles network. Bicycle collision avoidance system from our proposed architecture receives this information, and alerts to cyclist when the moving object influences the safety of bicycle.

Vibration Suppression of Moving Suspended Systems by Wave Absorption Control

  • Saigo, Muneharu;Nam, Dong-Ho
    • International Journal of Ocean Engineering and Technology Speciallssue:Selected Papers
    • /
    • v.6 no.1
    • /
    • pp.30-37
    • /
    • 2003
  • This paper describes vibration control of a suspended system using wave absorption method. A moving multiple-pendulum system and a moving wire-and-load system are treated. The wire-and-load system is extended to a model crane system that has a motor system to roll up and down the suspended mass like a real crane. The same program with different parameter values controls these three systems. Both numerical simulation and experiment have been conducted, and the present control method has shown to be quite effective.

  • PDF

Boundary Control of an Axially Moving Belt System in a Thin-Metal Production Line

  • Hong, Keum-Shik;Kim, Chang-Won;Hong, Kyung-Tae
    • International Journal of Control, Automation, and Systems
    • /
    • v.2 no.1
    • /
    • pp.55-67
    • /
    • 2004
  • In this paper, an active vibration control of a translating steel strip in a zinc galvanizing line is investigated. The control objectives in the galvanizing line are to improve the uniformity of the zinc deposit on the strip surfaces and to reduce the zinc consumption. The translating steel strip is modeled as a moving belt equation by using Hamilton’s principle for systems with moving mass. The total mechanical energy of the strip is considered to be a Lyapunov function candidate. A nonlinear boundary control law that assures the exponential stability of the closed loop system is derived. The existence of a closed-loop solution is shown by proving that the closed-loop dynamics is dissipative. Simulation results are provided.