훈련과 인식의 환경적 차이가 음성 인식 성능 저하의 주요 요인이며, 이러한 환경적 불일치를 줄이기 위한 다양한 잡음 처리 방법들이 연구되고 있다. 이 가운데 로그 에너지 특징에 대한 ERN(log-Energy dynamic Range Normalization), SEN(Silence Energy Normalization) 등이 우수한 성능을 보이고 있다. 그러나 이들 방법은 상대적으로 큰 갈을 갖는 로그 에너지 특징에 대해서는 처리가 불가능한 문제점이 이으며, 특히 SNR값이 작은 환경에서는 이러한 문제로 인하여 환경적 불일치가 더욱 크게 나타나고 있다. 이를 해결하기 위해서 본 논문은 자동 회귀 방식으로 이동 평균을 계산하여 로그 에너지 특징을 스무딩(smoothing)하는 ARMA(Auto-Regression and Moving Average) 필터를 후처리로 적용하는 방법을 제안한다. Aurora 2.0 DB를 이용한 인식 실험 결과, 제안 방법이 기존의 방법들에 비해 향상된 인식 결과를 얻을 수 있었다.
최근 빅데이터 처리를 위한 연구들이 활발히 진행 중이며, 관련된 다양한 제품들이 개발되고 있다. 이에 따라, 기존 환경에서는 처리가 어려웠던 대용량 로그 데이터의 저장 및 분석이 가능해졌다. 본 논문은 다수의 서버에서 빠르게 생성되는 대량의 로그 데이터를 Apache Hive에서 분석할 수 있는 데이터 저장 구조를 제안한다. 그리고 저장된 로그 데이터로부터 특정 서버의 이상 유무를 판단하기 위해, 이동 평균 및 3-시그마 기반의 이상 탐지 기술을 설계 및 구현한다. 또한, 실험을 통해 로그 데이터의 급격한 증가폭을 나타내는 구간을 이상으로 판단하여, 제안한 이상 탐지 기술의 유효성을 보인다. 이 같은 결과를 볼 때, 본 연구는 하둡 기반으로 로그 데이터를 분석하여 이상치를 바르게 탐지할 수 있는 우수한 결과라 사료된다.
최근 대용량 데이터 분석을 위해 다수의 서버를 사용하는 시스템이 증가하고 있다. 대표적인 빅데이터 기술인 하둡은 대용량 데이터를 다수의 서버로 구성된 분산 환경에 저장하여 처리한다. 이러한 분산 시스템에서는 각 서버의 시스템 자원 관리가 매우 중요하다. 본 논문은 다수의 서버에서 수집된 로그 데이터를 토대로 간단하면서 효율적인 이상 탐지 기법을 사용하여 로그 데이터의 변화가 급증하는 이상치를 탐지하고자 한다. 이를 위해, 각 서버로부터 로그 데이터를 수집하여 하둡 에코시스템에 저장할 수 있도록 Apache Hive의 저장 구조를 설계하고, 이동 평균 및 3-시그마를 사용한 세 가지 이상 탐지 기법을 설계한다. 마지막으로 실험을 통해 세 가지 기법이 모두 올바로 이상 구간을 탐지하며, 또한 가중치가 적용된 이상 탐지 기법이 중복을 제거한 더 정확한 탐지 기법임을 확인한다. 본 논문은 하둡 에코시스템을 사용하여 간단한 방법으로 로그 데이터의 이상을 탐지하는 우수한 결과라 사료된다.
광선 슈팅 문제는 주어진 기하 객체들에 대해서 직선을 따라서 이동하는 광선이 처음으로 부딪히는 객체의 점을 찾는 문제이다. 광선은 보통 질의의 형태로 주어지기 때문에, 이 문제의 일반적인 해법은 다음과 같다. 먼저, 전처리 과정으로, 주어진 객체들에 대한 자료구조를 구축한다. 그 다음, 이 자료구조를 이용하여 각 질의에 대한 답을 빠르게 구한다. 본 논문에서는 x축 상에 놓인 수직 선분들 집합에 대한 광선 슈팅 문제를 고려한다. 본 논문에서는 입력으로 주어진 n개의 수직 선분들에 대해 볼록 레이어 트리라고 부르는 새로운 자료구조를 제시한다. 이것은 수직 선분들의 볼록 외피들의 레이어로 구성되는 이진 트리이다. 이 트리는 O(n log n) 시간과 O(n) 공간의 알고리즘으로 구축되며 구현이 용이하다. 또한 이 자료구조를 사용하여 각 질의를 O(log n) 시간에 수행하는 알고리즘을 제시한다.
본 논문은 위성 통신 시스템에서 심볼율에 대한 사전 지식 없이 다양한 심볼율에 대한 심볼율 추정 방법과BPSK, QPSK, 8PSK 신호를 구분하기 위한 간단화된 변조 방식 구분법을 제안했다. 심볼율을 추정하기 위해 신호의 스펙트럼을 추정하기 위한 슬라이딩 FFT와 단순 moving average를 사용하였고, 슬라이딩 윈도우와 decimation, Low pass filter (LPF) 블록을 이용하여 정확한 심볼율을 추정하였다. 기존의 변조 방식 구분법은 test statistics로써 SNR값을 사용하지만 수신기는 통신 시작시에 변조 방식을 알지 못하기 때문에 SNR 값을 추정할 수 없는 문제와 log, cosh과 같은 비선형 함수를 사용하는 기존의 변조 방식 구분법이 비트 resolution이 높은 문제가 있기 때문에 기존의 변조 방식 구분법에 간단화된 고정된 SNR 방법을 제안하였다. 심볼율 추정과 변조 방식 구분법의 성능은 Monte Carlo 컴퓨터 시뮬레이션을 통해 보여주었고, 심볼율 추정이 낮은 SNR에서도 좋은 성능을 나타내는 것을 볼 수 있었고, 변조 방식 구분법을 간단화 하였지만 기존의 방법과 비교해서 비슷한 성능을 나타내는 것을 확인 할 수 있었다.
지진기록의 수평성분 S파 푸리에스펙트럼을 이용한 추계학적 지진동모델(stochastic point-source ground-motion model; Boore, 2003) 파라미터 역산결과를 기반으로 지진공학적으로 활용될 수 있는 지진관측소 분류를 시도하였다. 추계학적 지진동모델에서 부지효과는 고주파감쇠상수인 $K_0$ (Anderson and Hough, 1984)와 지층의 탄성임피던스의 차이에 의해 발생하는 부지증폭함수(A(f))의 조합으로 표현된다. 본 연구에서는 A(f)를 지진파 스펙트럼의 수평/수직성분비(H/V)와, 이를 초기값으로 하여 얻어진 역산결과에 의한 관측소별 로그오차평균을 합산하여 계산하였다. 지진관측소는 $1{\sim}10$ Hz 범위의 부지증폭함수의 상용로그 최대값($logA_{1-10}^{max}$(f))에 의해 다섯 등급(A: $logA_{1-10}^{max}$(f) < 0.2, B: 0.2 $\leq$$logA_{1-10}^{max}$(f) < 0.4, C: 0.4 $\leq$$logA_{1-10}^{max}$(f) < 0.6, D: 0.6 $\leq$ log < 0.8, E: 0.8 $\leq$$logA_{1-10}^{max}$(f))으로 분류하였다. 분류된 진관측소의 평균적인 부지증폭함수는 A에서 E 등급으로 변함에 따라 지반의 고유진동수가 저주파로 이동하는 의미 있는 결과를 나타내었으며, 최근에 설치장소를 이전한 기상청 일부 관측소에 대해 이설 전후의 등급변화 및 최근 발생한 중규모 지진관측자료와 지진동 거리감쇠식과의 비교분석을 통해 관측소 분류결과의 타당성을 입증할 수 있었다.
지능형 라이프로그 시스템은 언제(When), 어디서(Where), 누구와 함께(Who), 어떤 상황에서(What, How), 일어나는 정보, 즉 사용자의 일상에서 발생되는 시간, 인물, 장면, 연령대, 감정, 관계, 상태, 위치, 이동 경로 등의 다양한 상황정보들을 인식하여 태그를 달아 사용자의 일상생활을 기록하고 쉽고 빠르게 접근하도록 제공하는 것이다. 상황인식은 자동태킹(Auto-Tagging) 기술과 생체인식 기술인 얼굴인식을 이용해, 태그(Tag) 단위의 정보를 자동으로 생성하고 분류되어 상황정보 DB을 구축한다. 상황정보 DB에는 지리정보, 위치정보, 날씨정보, 감정정보 등을 포함하고 있다. 본 논문에서는 감정정보를 자동으로 기록하기 위해서 능동형태 모델 방법을 사용해 무표정과 웃는표정을 인식하는 어플리케이션을 개발하였다.
능동 스테레오 비젼 시스템은 목표물 판별을 위해서 간단한 연산만으로 작은 시차값을 가지는 특징들만을 통과시킴으로써 목표물 위치 측정을 가능케 한다. 그런데 이 간단한 방법은, 복잡한 배경이 포함되거나 시차가 영인 영역에 다른 물체들도 동시에 존재하면 적용이 어렵게 된다. 이러한 문제점들을 해결하기 위하여, 본 논문에서는 시야 중심 영역의 해상도는 높이고 일반적으로 중요도가 낮은 주변의 해상도는 감소시키는 포비에이션 기법을 필터링 방법과 결합시켰다 포비에이트 영상 표현을 위하여 영상 피라미드 또는 로그폴라 변환을 사용하였다. 또한 추적이 수행되는 동안에 스테레오 시차가 작은 값이 유지되도록 투영을 이용하여 스테레오 시차를 추출하였다. 실험 결과는 로그폴라 변환이 복잡한 배경으로부터 목표물을 분리하는 제안된 방법이 영상 피라미드 또는 기존 방법보다 우수하며, 추적성능을 상당히 개선함을 보여주고 있다.
네트워크 서버 접근시 발생되는 로그는 네트워크 관리에 필수적인 다양한 정보를 가지고 있다. 이러한 정보에서 네트워크 관리에 유용한 정보를 추출하여 사용자 접속량, 비정상적인 접근 등을 예측하여 네트워크 관리의 효율성을 높이고 비용을 줄일 수 있다. 네트워크 관리자는 SNMP를 활용하여 네트워크상 서버의 CPU, 메모리, 디스크 사용율과 같은 정보를 기반으로 서버의 상태를 실시간으로 파악할 수 있다. 본 논문에서는 네트워크 6가지 로그를 분석하여 사용자의 접속량을 예측에 필요한 정보를 추출한 후 시계열 분석 방법인 이동평균법과 지수평활법을 적용하여 실험하였다. 또한 SNMP 시뮬레이터를 활용하여 서버의 CPU, 메모리, 디스크 사용율에 관한 OID를 추출하여 서버의 상태와 장애 예측을 시계열 분석방법으로 실험한 후 엑셀과 R 프로그래밍언어를 통해 시각화된 예측 결과를 제시하였다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.