• Title/Summary/Keyword: Moving Blades

Search Result 42, Processing Time 0.016 seconds

Aerodynamic Simulation of Rotor-Airframe Interaction by the Momentum Source Method (모멘텀 소스 방법을 이용한 로터-기체간의 간섭작용 해석)

  • Kim, Young-Hwa;Park, Seung-O
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.37 no.2
    • /
    • pp.113-120
    • /
    • 2009
  • To numerically simulate aerodynamics of rotor-airframe interaction in a rigorous manner, we need to solve the Navier-Stokes system for a rotor-airframe combination in a single computational domain. This imposes a computational burden since rotating blades and a stationary body have to be simultaneously dealt with. An efficient alternative is a momentum source method in which the action of rotor is approximated as momentum source in a stationary mesh system built around the airframe. This makes the simulation much easier. The magnitude of the momentum source is usually evaluated by the blade element theory, which often results in a poor accuracy. In the present work, we evaluate the momentum source from the simulation data by using the Navier-Stokes equations only for a rotor system. Using this data, we simulated the time-averaged steady rotor-airfame interaction and developed the unsteady rotor-airframe interaction. Computations were carried out for the simplified rotor-airframe model (the Georgia Tech configuration) and the results were compared with experimental data. The results were in good agreement with experimental data, suggesting that the present approach is a usefull method for rotor-airframe interaction analysis.

A Study of Operating Forces on a Partially Admitted Turbine Blade (부분분사에 의한 터빈익형에서의 작동력 변화에 관한 연구)

  • Cho, Chong-Hyun;Choi, Hyoung-Jun;Chung, Dae-Hun;Im, Yong-Hoon;Cho, Soo-Yong
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.38 no.9
    • /
    • pp.890-899
    • /
    • 2010
  • An experimental study has been conducted to analyze the operating forces on a partially admitted turbine blade using a linear cascade apparatus. Axial-type blades were used and the blade chord was 200mm. The rectangular nozzle was applied and its size was $200mm{\times}200mm$. The experiment was done at $3{\times}10^5$ of Reynolds number based on the chord. The rotational force and axial force on the blade were measured at steady state by moving the blade to the rotational direction. The operating forces were measured at three different nozzle install angles of $58^{\circ}$, $65^{\circ}$ and $72^{\circ}$ for off-design performance test. In addition, three different solidities of 1.25, 1.38 and 1.67 were applied. From the results, the maximum rotational force was increased when the solidity was decreased and the nozzle install angle was decreased. The axial force was increased by decreasing the nozzle install angle. The reverse axial force was obtained in the partially admitted region when the nozzle install angle was increased to $72^{\circ}$.