디지털 기술이 산업 전반의 전자상거래 시장에 융합되면서 온라인 거래의 활성화와 이용률을 증가시켰으며, 이러한 시장의 흐름은 최근 코로나와 같은 감염병이 확산함에 따라 더욱 가속화되어 다양한 상품 정보를 온라인을 통해 고객들에게 제공할 수 있게 되었다. 다양한 정보의 제공은 고객들에게 다양한 선택의 기회를 제공하지만 의사결정에 어려움을 주기도 한다. 추천시스템은 고객의 의사결정에 도움을 줄 수 있으나 기존 추천시스템 연구는 정량적 데이터만에 국한되어 있으며, 상품 및 고객의 세부적인 요인을 반영하지 못하였다. 이에 본 연구에서는 온라인 리뷰를 기반으로 정성적 데이터를 텍스트 마이닝 기법을 적용하여 상품 및 고객의 속성을 정량화하고 기존의 객관적 지표인 총평점과 감성 및 감정을 통합한 지능형 추천시스템을 제안한다. 제안된 지능형 추천모형은 총평점 위주의 추천 모형보다 우수한 추천성과를 보여주었으며, 상품 및 고객의 세부적 요소를 반영한 추천결과를 통해 새로운 비즈니스 가치를 창출할 것으로 기대한다.
본 연구는 보다 정확한 텍스트의 감성 분석을 위해 새로운 감성 특징인 감성 패턴을 제안하고, 이를 이용한 영화평 평점 추론에 대해 소개한다. 텍스트 감성 분석은 텍스트에 포함된 감성인 긍정과 부정을 인식하고 분류하는 작업으로, 이를 위해 감성 특징인 감성 단어와 구문 패턴을 이용한다. 텍스트 내에 존재하는 감성 단어와 구문 패턴의 감성을 통해 텍스트 전체의 감성을 분류하는 것이다. 하지만, 기존 감성 분석은 감성 단어와 구문 패턴의 감성을 독립적으로 고려하기 때문에 문장 혹은 글 전체의 감성 정보를 정확히 파악하기 어렵다는 한계를 가지고 있다. 그러므로 본 연구는 기존 감성 특징들을 독립적으로 고려하는 것뿐만 아니라 문장 내에서 출현하는 감성들을 의미적으로 연결하여 하나의 패턴으로 정의한 감성 패턴을 제안하고, 감성 분석의 세부 연구 주제인 평점 추론에 감성 패턴을 새로운 감성 특징으로 사용하였다. 제안하는 감성 패턴의 효과를 검증하기 위해 영화평에 대한 평점 추론 실험을 수행하였다. 감성 패턴을 포함한 모든 감성 특징들을 사전에 정의한 학습 영화평들로부터 추출하고, 이를 확률 기법을 이용해 실험 영화평들의 평점을 추론하였다. 그 결과 감성 패턴을 사용하였을 경우 기존 감성 특징들만 사용했을 때 보다 추론한 평점이 더욱 정확함을 확인하였다.
Sentiment analysis is a technique of text mining that extracts feelings of the person who wrote the sentence like movie review. The preliminary researches of sentiment analysis identify sentiments by using the dictionary which contains negative and positive words collected in advance. As researches on deep learning are actively carried out, sentiment analysis using deep learning model with morpheme or word unit has been done. However, this model has disadvantages in that the word dictionary varies according to the domain and the number of morphemes or words gets relatively larger than that of phonemes. Therefore, the size of the dictionary becomes large and the complexity of the model increases accordingly. We construct a sentiment analysis model using recurrent neural network by dividing input data into phoneme-level which is smaller than morpheme-level. To verify the performance, we use 30,000 movie reviews from the Korean biggest portal, Naver. Morpheme-level sentiment analysis model is also implemented and compared. As a result, the phoneme-level sentiment analysis model is superior to that of the morpheme-level, and in particular, the phoneme-level model using LSTM performs better than that of using GRU model. It is expected that Korean text processing based on a phoneme-level model can be applied to various text mining and language models.
Digital makeup(DM), depending upon computer graphic softwares, is applied to various fields, e.g. character works in movie and game industries and visual printouts in printing works. Focused on makeup field, DM is extremely conducive to developing, scientizing and informationalizing makeup patterns. Despite of unlimited potential of DM of which market size has been growing day by day, its practical use by domestic makeup experts and educators is much less active than expected as far, due to the lack of knowledge accumulation. The purpose of this study is to suggest some theoretical frameworks to generalize DM techniques and analyze two cases using the frames therefore support academicians' recent efforts to theorize DM techniques. The study 1) defines and categorizes the concepts of DM and DFX(digital special effect); 2) reviews the literature relevant to DM and generalizes the types and methods of DM techniques; 3) applies general frames to analyzing two movie cases, famous for their DM effects; 4) then suggests, based upon analytical results, some efficient ways for makeup experts to use DM techniques in practice. This study contributes to providing the theoretical grounds to conceptualize DM thus broadening makeup artists' interests in DM and awakening the scholarly concerns in cultural technology including DM.
People write reviews of numerous products or services on the Internet, in their blogs or community bulletin boards. These unstructured data contain important emotions and opinions about the author's product or service, which can provide important information for future product design or marketing. However, this text-based information cannot be evaluated quantitatively, and thus they are difficult to apply to mathematical models or optimization problems for product design and improvement. Therefore, this study proposes a method to quantitatively extract user's opinion or preference about a specific product or service by utilizing a lot of text-based information existing on the Internet or online. The extracted unstructured text information is decomposed into basic unit words, and positive rate is evaluated by using existing emotional dictionaries and additional lists proposed in this study. This can be a way to effectively utilize unstructured text data, which is being generated and stored in vast quantities, in product or service design. Finally, to verify the effectiveness of the proposed method, a case study was conducted using movie review data retrieved from a portal website. By comparing the positive rates calculated by the proposed framework with user ratings for movies, a guideline on text mining based evaluation of unstructured data is provided.
웹의 발전과 콘텐츠 산업의 팽창으로 비디오 데이터가 폭발적으로 증가함에 따라 데이터의 정보 검색은 매우 중요한 문제가 되었다. 그동안 비디오 데이터의 정보 검색과 브라우징을 위해 비디오의 프레임(frame)이나 숏(shot)으로부터 색채(color)와 질감(texture), 모양(shape)과 같은 시각적 특징(features)들을 추출하여 비디오의 내용을 표현하고 유사도를 측정하는 내용 기반(content-based)방식의 비디오 분석이 주를 이루었다. 영화는 하위 레벨의 시청각적 정보와 상위 레벨의 스토리 정보를 포함하고 있다. 저차원의 시각적 특징을 통해 내용을 표현하는 내용 기반 분석을 영화에 적용할 경우 내용 기반 분석과 인간이 인지하는 영화의 내용 사이에는 의미적 격차(semantic gap)가 발생한다. 왜냐하면 영화의 스토리는 시간의 진행에 따라 그 내용이 변하고, 관점에 따라 주관적 해석이 가능한 고차원의 의미정보이기 때문이다. 따라서 스토리 차원의 정보 검색을 위해서는 스토리를 모델링하는 정형화된 모형이 필요하다. 최근 들어 소셜 네트워크 개념을 활용한 스토리 기반의 비디오 분석 방법들이 등장하고 있다. 그러나 영화 속 등장인물들의 소셜 네트워크를 통해 스토리를 표현하는 이 방법들은 몇 가지 문제점들을 드러내고 있다. 첫째, 등장인물들의 관계에만 초점이 맞추어져 있으며, 스토리 진행에 따른 등장인물들의 관계 변화를 역동적으로 표현하지 못한다. 둘째, 등장인물의 정체성과 심리상태를 보여주는 감정(emotion)과 같은 심층적 정보를 간과하고 있다. 셋째, 등장인물 이외에 스토리를 구성하는 사건과 배경에 대한 정보들을 반영하지 못하고 있다. 따라서 본 연구는 기존의 스토리 기반의 비디오 분석 방법들의 한계를 살펴보고, 문제 해결을 위해 문학 이론에서 제시하고 있는 서사 구조에 근거하여 스토리 모델링에 필요한 요소들을 인물, 배경, 사건의 세 가지 측면에서 제시하고자 한다.
The aims of this research were to characterize magic realism by analyzing existing magical reality literature reviews and research and to identify material that may inspire ideas for stage and film costume design by analyzing and drawing design characteristics and magic realism of costumes from Director Tarsem Singh's movie, 'Mirror, Mirror'. For the methodology, characteristics of magic realism in literature and, movies were analyzed, with a theoretical consideration of these materials on magical realism. Data on costume design and magical realism characteristics for use in the analysis were collected from the main characters of 'Mirror, Mirror' as well as from other characters. The result of this analysis was the emergence of five common characteristics of the magic realism Historicity, the most remarkable characteristic seen in Tarsem Singh films, was expressed through the symbolic meaning and decorative patterns shown by the traditional-style costumes, colors. Symbolization was expressed through the symbolic meaning, decorative elements, and traditional clothes, as shown by the colors and forms of the costumes. Fantasy was expressed through the colors, decorative elements, forms of traditional clothing, and forms with symbolic meaning. Reproducibility was expressed through the method of decorative element, symbolic meaning, traditional forms and de-structural clothes. Ambiguity, which can be associated with the combined characteristics of historicity and fantasy, was expressed in the clothes worn in the scenes that confounded time and space within the film.
Purpose - This study analyzed the correlation between economic liberalization and foreign direct investment. The purpose of this study is to seek ways to attract foreign direct investment from developing countries. Design/methodology/approach - This study analysed with observations of 19 from 2000 to 2018 using a fixed effect model, a random effect model, and a two-way fixed effect model. Findings - First, it was found that economic liberalization had a positive effect on attracting foreign direct investment in the early stages of economic liberalization. Second, it was found that economic liberalization in the deepening stage of economic liberalization had a negative effect on attracting foreign direct investment. In general, it was found that the higher the level of economic liberalization in developing countries is not accompanied by innovative changes in the industrial structure, the higher the level of economic liberalization is likely to decrease the inducement of foreign direct investment due to negative factors such as an increase in labor costs. Overall, this study approved that Economic liberalization have a non-linear (inverted U-shape) relationship with the inflow of foreign direct investment. Research implications or Originality - First, this study attempted to expand the variables for the determinants of FDI by analyzing economic factors which is a determinent of FDI. Second, economic liberalization generally has a positive effect on foreign direct investment, but it proved that it does not have only positive effects as a factor of attracting foreign direct investment in developing countries. The advantage of low wages in ASEAN countries acts as a factor for foreign direct investment, but as the degree of economic liberalization increases, the environment such as government size, guarantee of property rights, international trade freedom, fiscal soundness, and regulations change positively. On the other hand, it can be suggested that if the industrial level is less, it may lead to a loss of comparative advantage and a decrease in investment.
본 연구는 안드로이드 스마트폰에서 최신 문화 관람 및 정보를 제공하는 App을 개발하여 사용자가 문화생활을 즐기고자 할 때 이 DB를 사용하여 각 뮤지컬, 연극, 영화 별로 사용자가 원하는 정보를 검색하여 열람할 수 있고 또한 리뷰 등록 및 열람이 가능하다. 또한 관리자는 관리자(Administrator)모드로 로그인하여 문화 정보를 관리하고 사용자들의 정보를 확인할 수 있게 함으로써 시스템 관리를 원활이 이루어지게 한다. 또한 사용자는 사용자(User)모드로 로그인을 하여 문화 정보를 열람할 수 있고, 감상평을 기록하고 친구그룹의 추천기능을 통해 신뢰할만한 공연정보를 확인하여 여가생활을 문화 활동으로 즐길 수 있도록 한다.
텍스트 문서에서 주관적인 의견과 감정을 긍정 혹은 부정으로 분류하고 식별하는 자연어 처리의 한 분야인 감성 분석은 고객 선호도 분석을 통해 다양한 홍보 및 서비스에 활용할 수 있다. 이를 위해 최근 머신러닝과 딥러닝의 다양한 기법을 활용한 연구가 진행되어 왔다. 본 연구에서는 기존의 RNN 기반 모델들과 최근 트랜스포머 기반 언어 모델들을 활용하여 영화, 상품 및 게임 리뷰를 대상으로 감성 분석의 정확도를 비교 분석하여 최적의 언어 모델을 제안하고자 한다. 실험 결과 한국어 말뭉치로 사전 학습된 모델들 중 LMKor-BERT와 GPT-3가 상대적으로 좋은 정확도를 보여주었다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.