• Title/Summary/Keyword: Movement and Deformation Model

Search Result 99, Processing Time 0.022 seconds

Soil Failure Mode of a Buried Pipe Around in Soil Undergoing Lateral Movement (측방변형지반속 매설관 주변지반의 파괴모드)

  • Hong, Won-Pyo;Han, Jung-Geun
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.5 no.5
    • /
    • pp.11-21
    • /
    • 2002
  • A series of model tests is performed to evaluate the relationship between soil and a buried pipe in soil undergoing lateral movement. As the result of the model tests, a wedge zone and plastic flow zones could be observed in front of the pipe. And also an arc failure of cylindrical cavity could be observed at both upper and lower zones. Failure shapes in both cohesionless and cohesive soils are nearly same, which was investigated failure angle of $45^{\circ}+{\phi}/2$. In the cohesionless soil, the higher relative density produces the larger arc of cylindrical cavity. On the basis of failure mode observed from model tests, the lateral earth pressure acting on a buried pipe in soil undergoing lateral movement could be applying the cylindrical cavity extension mode. The deformation behavior of soils was typically appeared in three divisions, which are elastic zones, plastic zones and pressure behavior zones.

Undrained Creep Characteristics of Silty Sands and Comparative Study of Creep model (실트질 모래의 비배수 크리프특성 및 크리프 모델 비교연구)

  • Bong, Tae-Ho;Son, Young-Hwan;Noh, Soo-Kack;Park, Jae-Sung
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.54 no.1
    • /
    • pp.19-26
    • /
    • 2012
  • Soils exhibit creep behavior in which deformation and movement proceed under a state of constant stress or load. In this study, A series of triaxial tests were performed under constant principal stress in order to interpret the undrained creep characteristics of silty sands. Although samples are non-plastic silty sands, the results of tests show that the creep deformation increasing over time. Based on the results of test, Singh-Mitchell model parameters and Generalized model coefficients were calculated. Generalized model showed slightly larger deformation in the primary creep range but secondary creep deformation was almost identical. Although Singh-Mitchell model showed relatively large errors compared to Generalized model because it uses the average of test results, but Singh-Mitchell model can be easily represented by three creep parameters.

Lateral Earth Pressures on Buried Pipes due to Lateral Flow of Soft Grounds (연약지반의 측방유동으로 인하여 매설관에 작용하는 측방토압)

  • Hong, Byungsik;Kim, Jaehong
    • Journal of the Korean GEO-environmental Society
    • /
    • v.11 no.9
    • /
    • pp.27-38
    • /
    • 2010
  • A series of model test as well as numerical analysis by FEM was performed to investigate lateral earth pressure acting on a buried pipe in soft ground undergoing horizontal soil movement. A model test apparatus was manufactured so as to simulate horizontal soil movement in model soft ground, in which a model rigid buried pipe was installed. The velocity of soil deformation could be controlled as wanted during testing. The model test was performed on buried pipes with various diameters and shapes to investigate major factors affected the lateral earth pressure. The result of model tests showed that the larger lateral earth pressure acted on the buried pipes under the faster velocity of soil movement. The result of numerical analysis, which was performed under immediate loading condition, showed a similar behavior with the result of model tests under 0.3mm/min to 1.0mm/min velocity of soil deformation. Most of model tests showed the soil deformation-lateral load behavior, in which the first yielding load developed at small soil deformation and elastic behavior was observed by the yielding load. Then, lateral load was kept constant by the second yielding load, in which plastic behavior was observed between the first yielding load and the second yielding one. Beyond the second yielding load, the compression behavior zone was observed. When the velocity was too fast, however, the lateral load was increased with soil deformation beyond the first yielding load without showing the second yielding load. The buried pipes with the larger diameter was subjected to the larger lateral load and the larger increasing rate of lateral load. At small soil deformation, the influence of diameter and shape of buried pipes on lateral load was small. However, when soil deformation was increased considerably, the influence became more and more.

Tunnel Deformation in Shallow Unconsolidated Ground by Using Strain-Softening Model (변형연화모델을 이용한 미고결 지반의 터널변형)

  • Seo, In-Shik;Kim, Byung-Tak
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.10 no.2
    • /
    • pp.81-88
    • /
    • 2007
  • In case of an urban tunnel, the displacement of ground base controls the tunnel design because it is built on shallow and unconsolidated ground many times. There are more insufficiency to describe the ground movement which coincides in the measured result of the situ because the design of an urban tunnel is dependent on the method of numerical analysis used to the existing elastic and elasto-plastic models. We studied about the prediction for the ground movement of a shallow tunnel in unconsolidated ground, mechanism of collapse, and settlement. Also this paper shows comparison with the existing elastic and elasto-plastic model using the unlinear analysis of the strain-softening model. We can model the real ground movement as the increasement of ground surface inclination or occurrence of shear band by using strain-softening model for the result of ground movement of an urban NATM tunnel.

  • PDF

Inversion Research on the shortening and Sliding of Drape Zones between Chinese Continent Blocks by GPS Data

  • Zhixing, Du;Fanlin, Yang;Xinzhou, Wang;Xiushan, Lu;Huizhan, Zhang
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • v.1
    • /
    • pp.401-405
    • /
    • 2006
  • A uniform velocity field of crust can be obtained by cumulative multi-year GPS data. Then the shortening and sliding of drape zones between Chinese Continent Blocks can be researched through the velocity field and dynamics meaning is also analyzed. A model of movement and strain is created to extract displacing and rotating information of blocks in this paper. On the basis of it, the shortening vectors and sliding states of drape zones between blocks can be obtained by the model of level center of gravity moving velocity vectors between neighboring blocks. Some result show as follows. India plate jostles greatly toward north, so a complicated movement situation is formed for 14 sub-blocks. And self-deformations of inner tectosomes can be greatly reflected according to the characteristics of drape zones between tectosomes. The extrusion deformation exists between Himalaya and Qiangtang blocks. Its contraction ratio is about 20.1 $mm.a^{-1}$. However, it only is $mm.a^{-1}$ between Tarim and Zhungar. The deformation characteristics and contraction ratio of other drape zones are obviously different with the former. The movement characteristics of contraction, shear, dislocation, etc. are showed in these zones. The average contraction ratio is about 5.0 $mm.a^{-1}$. The whole trend in the west continent has a big movement toward north, and in the east continent has a small movement toward south or southeast. The strain of west continent is far bigger than that of east, and the strain of southwest is bigger than that of the southeast. It is whole showed that India plate jostles toward north-east and the south-north zone has cutting and absorbing phenomena. The total characteristics and present-day trends of deformation of inland drape zones are basically described by the sinistrorse dislocation in south-north zone and Arjin fracture, the sinistrorse shear between south china and north china, etc.

  • PDF

Molecular Theory of Plastic Deformation (I). Theory (소성변형의 분자론 (제1보). 이론)

  • Kim Chang Hong;Ree Taikyue
    • Journal of the Korean Chemical Society
    • /
    • v.21 no.5
    • /
    • pp.330-338
    • /
    • 1977
  • In order to elucidate the plastic deformation of solids, the following assumptions were made: (1) the plastic deformation of solids is classified into two main types, the one which is caused by dislocation movement and the other caused by grain boundary movement, each movement being restricted on a different shear surface, (2) the dislocation movement is expressed by a mechanical model of a parallel connection of various kinds of Maxwell dislocation flow units whereas the grain boundary movement is also expressed by a parallel connection of various kinds of Maxwell grain boundary flow units; the parallel connection in each type of movements indicates that all the flow units on each shear surface flow with the same shear rate, (3) the latter model for grain boundary movement is connected in series to the former for dislocation movement, this means physically that the applied stress distributes homogeneously in the flow system while the total strain rate distributes heterogeneously on the two types of shear planes (dislocation or grain boundary shear plane), (4) the movement of dislocation flow units and grain boundary units becomes possible when the atoms or molecules near the obstacles, which hinder the movement of flow units, diffuse away from the obstacles.Using the above assumptions in conjunction with the theory of rate processes, generalized equations of shear stress and shear rate for plastic deformation were derived. In this paper, four cases important in practice were considered.ted N${\cdot}{\cdot}{\cdot}$O hydrogen bond and the second of two normal N${\cdot}{\cdot}{\cdot}$O hydrogen bonds, both of which exist between the amino group and the perchlorate, groups. A p-phenylenediamine group is approximately planar within an experimental error and bonded to twelve perchlorates: ten perchlorates forming hydrogen bonds and two being contacted with the van der Waals forces. A perchlorate group is surrounded by six p-phenylenediamines and four perchlorates; among the six p-phenylenediamines, five of them are hydrogen-bonded, and the rest contacted with the van der Waals force.

  • PDF

A new dynamic construction procedure for deep weak rock tunnels considering pre-reinforcement and flexible primary support

  • Jian Zhou;Mingjie Ma;Luheng Li;Yang Ding;Xinan Yang
    • Geomechanics and Engineering
    • /
    • v.38 no.3
    • /
    • pp.319-334
    • /
    • 2024
  • The current theories on the interaction between surrounding rock and support in deep-buried tunnels do not consider the form of pre-reinforcement support or the flexibility of primary support, leading to a discrepancy between theoretical solutions and practical applications. To address this gap, a comprehensive mechanical model of the tunnel with pre-reinforced rock was established in this study. The equations for internal stress, displacement, and the radius of the plastic zone in the surrounding rock were derived. By understanding the interaction mechanism between flexible support and surrounding rock, the three-dimensional construction analysis solution of the tunnel could be corrected. The validity of the proposed model was verified through numerical simulations. The results indicate that the reduction of pre-deformation significantly influences the final support pressure. The pre-reinforcement support zone primarily inhibits pre-deformation, thereby reducing the support pressure. The support pressure mainly affects the accelerated and uniform movement stage of the surrounding rock. The generation of support pressure is linked to the deformation of the surrounding rock during the accelerated movement stage. Furthermore, the strength of the pre-reinforcement zone of the surrounding rock and the strength of the shotcrete have opposite effects on the support pressure. The parameters of the pre-reinforcement zones and support materials can be optimized to achieve a balance between surrounding rock deformation, support pressure, cost, and safety. Overall, this study provides valuable insights for predicting the deformation of surrounding rock and support pressure during the dynamic construction of deep-buried weak rock tunnels. These findings can guide engineers in improving the construction process, ensuring better safety and cost-effectiveness.

Numerical investigation on overburden migration behaviors in stope under thick magmatic rocks

  • Xue, Yanchao;Wu, Quansen;Sun, Dequan
    • Geomechanics and Engineering
    • /
    • v.22 no.4
    • /
    • pp.349-359
    • /
    • 2020
  • Quantification of the influence of the fracture of thick magmatic rock (TMR) on the behavior of its overlying strata is a prerequisite to the understanding of the deformation behavior of the earth's surface in deep mining. A three-dimensional numerical model of a special geological mining condition of overlying TMR was developed to investigate the overburden movement and fracture law, and compare the influence of the occurrence horizon of TMR. The research results show that the movement of overlying rock was greatly affected by the TMR. Before the fracture of TMR, the TMR had shielding and controlling effects on the overlying strata, the maximum vertical and horizontal displacement values of overlying strata were 0.68 m and 0.062 m. After the fracture, the vertical and horizontal displacements suddenly increased to 3.06 m and 0.105 m, with an increase of 350% and 69.4%, respectively, and the higher the occurrence of TMR, the smaller the settlement of the overlying strata, but the wider the settlement span, the smaller the corresponding deformation value of the basin edge (the more difficult the surface to crack). These results are of tremendous importance for the control of rock strata and the revealing of surface deformation mechanism under TMR mining conditions in mines.

A Material Simulation of High-Strain-Rate Deformation with Dislocations and Vacancies (전위 및 공공을 고려한 고변형률 변형에 대한 재료 시뮬레이션)

  • Choi, Deok-Kee;Ryu, Han-Kyu
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.28 no.9
    • /
    • pp.1306-1313
    • /
    • 2004
  • This paper addresses a theoretical approach to calculate the amount of the stored energy during high strain-rate deformations using atomistic level simulation. The dynamic behavior of materials at high strain-rate deformation are of great interest. At high strain-rates deformations, materials generate heat due to plastic work and the temperature rise can be significant, affecting various properties of the material. It is well known that a small percent of the energy input is stored in the material, and most of input energy is converted into heat. However, microscopic analysis has not been completed without construction of a material model, which can simulate the movement of dislocations and vacancies. A major cause of the temperature rise within materials is traditionally credited to dislocations, vacancies and other defects. In this study, an atomistic material model for FCC such as copper is used to calculate the stored energy.

Deformation Mechanism of the Roller Hemming Process with the Finite Element Analysis (유한요소해석을 이용한 롤러헤밍 공정의 변형기구 분석)

  • Rho, J.D.;Kwak, J.H.;Kim, S.H.;Ju, Y.H.;Kim, J.H.;Shin, H.S.
    • Transactions of Materials Processing
    • /
    • v.25 no.5
    • /
    • pp.325-331
    • /
    • 2016
  • In this paper, a three-dimensional part model is constructed for the finite element analysis of hemming models where hemming defects frequently occur. The roller path is modeled as the boundary condition with the one-dimensional beam element and the revolute joint model. With the constructed part model and the roller movement, a finite element analysis has been pursued in order to identify the hemming load and hemming defects such as wrinkling in the flange region. The analysis result shows that the maximum hemming load occurs in the intake situation while oscillatory behavior of the load is found especially when hemming the curved model because of wrinkle generation. This paper compares the amplitude and the period of wrinkle between the analysis result and the experiment, which shows good agreement with each other.