• Title/Summary/Keyword: Movable sensor

Search Result 40, Processing Time 0.021 seconds

Vision Aided Inertial Sensor Bias Compensation for Firing Lane Alignment (사격 차선 정렬을 위한 영상 기반의 관성 센서 편차 보상)

  • Arshad, Awais;Park, Junwoo;Bang, Hyochoong;Kim, Yun-young;Kim, Heesu;Lee, Yongseon;Choi, Sungho
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.50 no.9
    • /
    • pp.617-625
    • /
    • 2022
  • This study investigates the use of movable calibration target for gyroscopic and accelerometer bias compensation of inertial measurement units for firing lane alignment. Calibration source is detected with the help of vision sensor and its information in fused with other sensors on launcher for error correction. An algorithm is proposed and tested in simulation. It has been shown that it is possible to compensate sensor biases in firing launcher in few seconds by accurately estimating the location of calibration target in inertial frame of reference.

Fabrication of the Micro-pump using Stereolithography Technology (Stereolithography 기술을 이용한 마이크로 펌프 제작)

  • Lee, Young-Tae;Seo, Hee-Don
    • Journal of Sensor Science and Technology
    • /
    • v.10 no.4
    • /
    • pp.232-238
    • /
    • 2001
  • We fabricated micro-pump using stereolithography technology. The pump was fabricated using PZT for its drive and used non-movable valve of diffuser/nozzle concept. Size of the pump chamber is, $14mm{\psi}$, narrow hole of diffuser/nozzle is $0.5mm{\psi}$ and wide hole $1mm{\psi}$ and chamber depth is 1.2mm, respectively. We confirmed its operation at frequency 100Hz, supply voltage $90{\sim}250Vp-p$. As the result of the pump working measurement, when ethanol is used, the pressure head difference between inlet and outlet of the pump is about 53mm in the frequency of 100Hz, 200V of Vp-p.

  • PDF

Development and Experiment of a Micropositioning Parallel Manipulator (마이크로포지셔닝 병렬평행기구의 개발 및 실험)

  • Cha, Young-Youp;Yoon, Kwon-Ha
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.15 no.5
    • /
    • pp.543-547
    • /
    • 2009
  • This paper describes the design, simulation, development, and experiment of a six degree-of-freedom micropositioning parallel manipulator. A movable stage was supported with six links, each of which extends with a dc-servo micropositioning actuator. In case of parallel manipulator, while the solution of the inverse kinematics is easily found by the vectors of the links which are composed of the joint coordinates in base and platform, but forward kinematic is not easily solved because of the nonlinearity and complexity of the parallel manipulator's kinematic output equation with the multi-solutions. The movable range of the prototype was ${\pm}25mm$ in the x- and y-directions and ${\pm}12.5mm$ in the z-direction. The minimum incremental motion of the prototype was $1{\mu}m$ in the x- and y-directions and $0.5{\mu}m$ in the z-direction. The repeatability of the prototype was ${\pm}2{\mu}m$ in the x- and y-directions and ${\pm}1{\mu}m$ in the z-direction. The motion performance was also evaluated by not only the computer simulation of CAD model but also the experiment using a capacitive sensor system.

Dynamic analysis of magnetorheological elastomer sandwich MEMS sensor under magnetic field

  • Akhavan, Hossein;Ehyaei, Javad;Ghadiri, Majid
    • Smart Structures and Systems
    • /
    • v.29 no.5
    • /
    • pp.705-714
    • /
    • 2022
  • In this paper, the effect of magnetic field on the vibration behavior of a Magnetorheological elastomer (MRE) sandwich MEMS actuated by electrostatic actuation with conductive skins are examined within the multiple scales (MMS) perturbation method. Magnetorheological smart materials have been widely used in vibration control of various systems due to their mechanical properties change under the influence of different magnetic fields. To investigate the vibrational behavior of the movable electrode, the Euler-Bernoulli beam theory, as well as Hamilton's principle is used to derive the equations and the related boundary conditions governing the dynamic behavior of the system are applied. The results of this study show that by placing the Magnetorheological elastomer core in the movable electrode and applying different magnetic fields on it, its natural vibrational frequency can be affected so that by increasing the applied magnetic field, the system's natural frequency increases. Also, the effect of various factors such as the electric potential difference between two electrodes, changes in the thickness of the core and the skins, electrode length, the distance between two electrodes and also change in vibration modes of the system on natural frequencies have been investigated.

The Obstacle Avoidance and Position Acuracy Control Algorithm for Self Controlled Mobile Robot Using Image Information And Compass Module (영상정보와 방위각 센서를 이용한 장애물 회피와 위치 정밀제어에 대한 알고리즘)

  • 구본민;최중경;박무열;류한성;권정혁;신영호
    • Proceedings of the IEEK Conference
    • /
    • 2002.06e
    • /
    • pp.177-180
    • /
    • 2002
  • In this paper, we has been studied self controlled mobile robot system with CCD camera. This system consists of TMS320F240 digital signal processor, step motor, RF module and CCD camera. 2-axis compass and magnetic sensor, we used wireless RF module for movable command transmiting between robot and host PC. This robot go straight until 95 percent filled screen with white color both side from input image. And the robot recognizes obstacle about 95 percent filled something, so it could turn for avoid the obstacle and conclude new path plan. it could get turning angle from 2-axis compass and magnetic sensor.

  • PDF

Study on Mobile Robot's Navigation Problem Using Jacobian and Fuzzy Inference System (자코비안과 퍼지 추론 시스템을 이용한 이동로봇의 주행문제에 관한 연구)

  • Choi Gyu-Jong;Ahn Doo-Sung
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.12 no.6
    • /
    • pp.554-560
    • /
    • 2006
  • In this paper, we propose the topological map building method about unknown environment using the ultrasonic sensors. An ultrasonic sensor inherently has the range error due to the specular reflection. To decrease this error, we estimate the obstacle states(position and velocity) using the local minimum sensor values and Jacobian. Estimated states are used to avoid the obstacles and build the topological map similar to the type that human being memorizes an environment. When a mobile robot is faced with three problems(comer way, cross way and dead end), it senses the movable directions using FIS(Fuzzy Inference System). Among these directions, it can select the target direction using binary decision tree(Turn Side Selector). Proposed algorithm has been verified with three simulations and three implementations.

Remote Control of Movable Robot Arm using Gyro Sensor and Flex Sensor (자이로센서와 플렉스 센서를 이용한 이동형 로봇팔 원격 제어)

  • Jang, Jae-Seok;Kim, Min-Soo;Kim, Seong-Jin;Lee, Cheol-Keun;Park, Hyoung-Keun
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.16 no.6
    • /
    • pp.1205-1212
    • /
    • 2021
  • Robots that can actually help people a lot by dealing with dangerous tasks that are difficult for people to do, such as disaster situations, lifesaving, handling dangerous goods, and reconnaissance of dangerous areas, continue to become an issue. Therefore, in this paper, we intend to implement a mobile robot arm that can implement a human motion will on the robot arm to enable active response according to the situation and control the vehicle according to hand movements to give mobility. A controller is manufactured using a flex sensor and agyro sensor, and the roll and pitch values of the two gyro sensors are adjusted to control the angle of the robot arm and specify the vehicle direction. In addition, by designating the levels of the three flex sensors, the motor is operated according to hand movements, and a robot arm is implemented so that objects can be picked up and moved.

Design Self-Organization Routing Protocol for supporting Data Security in Healthcare Sensor Network (헬스케어 센서 네트워크에서 데이터 보안을 지원한 자기구성 라우팅 프로토콜 설계)

  • Nam, Jin-Woo;Chung, Yeong-Jee
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2008.05a
    • /
    • pp.517-520
    • /
    • 2008
  • Wireless sensor network supporting healthcare environment should provide customized service in accordance with context information such as continuous location change and status information for people or movable object. In addition, we should consider data transmission guarantees a person's bio information and privacy security provided through sensor network. In this paper analyzes LEACH protocol which guarantees the dynamic self-configuration, energy efficiency through configuration of inter-node hierarchical cluster between nodes and key distribution protocol used for security for data transmission between nodes. Based on this analysis result, we suggested self-configuration routing protocol supporting node mobility which is weakness of the existing LEACH protocol and data transmission method by applying key-pool pre-distribution method whose memory consumption is low, cluster unit public key method to sensor node.

  • PDF

Study on Electro-Mechanical Characteristics of Array Type Capacitive Pressure Sensors with Stainless Steel Diaphragm and Substrate (스테인리스 강 박막 및 기판을 이용한 배열형 정전용량 압력센서의 전기 기계적 특성연구)

  • Lee, Heung-Shik;Chang, Sung-Pil;Cho, Chong-Du
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.30 no.11 s.254
    • /
    • pp.1369-1375
    • /
    • 2006
  • In this work, mechanical characteristics of stainless steel diaphragm have been studied as a potential robust substrate and a diaphragm material for micromachined devices. Lamination process techniques combined with traditional micromachining processes have been adopted as suitable fabrication technologies. To illustrate these principles, capacitive pressure sensors based on a stainless steel diaphragm have been designed, fabricated and characterized. The fabrication process for stainless steel micromachined devices keeps the membrane and substrate being at the environment of 8.65MPa pressure and $175^{\circ}C$ for a half hour and then subsequently cooled to $25^{\circ}C$. Each sensor uses a stainless steel substrate, a laminated stainless steel film as a suspended movable plate and a fixed, surface micromachined back electrode of electroplated nickel. The finite element method is adopted to investigate residual stresses formed in the process. Besides, out-of-plane deflections are calculated under pressures on the diaphragm. The sensitivity of the device fabricated using these technologies is 9.03 ppm $kPa^{-1}$ with a net capacitance change of 0.14 pF over a range 0$\sim$180 kPa.

Mobile remote assistant robot using flex sensor and mecanum wheel (플렉스 센서와 메카넘 휠을 사용한 이동식 원격 작업보조 로봇)

  • Yoon, DongKwan;Park, CheolYoung
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.27 no.2
    • /
    • pp.53-59
    • /
    • 2022
  • In this paper, a mobile robot capable of remote control is designed in consideration of the user's various work environments. Specifically, a mobile remote work robot that moves in a predetermined direction and can perform a series of tasks in synchronization with the user's hand movements, and a control system and control method for controlling the robot were proposed. It was implemented using a robot hand and a wheel for movement to assist in tasks such as transporting dangerous goods or heavy goods. In order to evaluate the performance of the developed robot, the maximum weight that can be carried by the robot hand and the movable inclination of the robot were tested, and the test evaluation results satisfied most of the targeted design specifications.