• Title/Summary/Keyword: Motor theory

Search Result 471, Processing Time 0.024 seconds

Design of a Fuzzy-Tuning High Gain Observer for Speed-Sensorless Control of an AC Servo Motor (교류 서보 전동기 속도센서리스 제어를 위한 퍼지 동조 고이득 관측기 설계)

  • Kim, Sang-Hoon;Kim, Lark-Kyo
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.54 no.12
    • /
    • pp.705-712
    • /
    • 2005
  • This paper deals with speed-sensorless control of an AC servo motor using Fuzzy-Tuning High Gain Observer(FTHGO). Resolver or encoder can be used to measure a rotor speed, but it has a limit to detect motor speed precisely. To solve this problem, it is studied to measure a speed of an AC servo motor without sensor. In this paper, the gain of an observer to estimate motor speed is properly set up and designed using the fuzzy control theory. It calculates the differentiation of the rotor current of the AC motor and estimates the rotor speed using it. Proposed speed sensorless control is performed using the estimated speed as the control variable. Designed FTHGO is applied to AC servo motor to verify the feasibility of the proposed observer. Feasibility of the FTHGO proposed in this paper is proven comparing the experimental results with/without the speed sensor.

The study on DC Motor control method applied by micro-processor (마이크로프로세서를 적용한 직류모터 제어방법 연구)

  • Yu, Sin-Cheol;Park, Kwang-Hwan;Cho, Dong-An
    • Proceedings of the KSR Conference
    • /
    • 2010.06a
    • /
    • pp.227-233
    • /
    • 2010
  • This paper treats the method to build up Motor drive-circuit using semi-conduct control part like power transistor, MOSEFT and refers to the operation theory, forward, reverse rotation control and speed control method which is changed by PWM. And also, this paper mention to the basic principle of DC Motor and various Motor control method using micro-processor.

  • PDF

An FNN based Adaptive Speed Controller for Servo Motor System

  • Lee, Tae-Gyoo;Lee, Je-Hie;Huh, Uk-Youl
    • Journal of Electrical Engineering and information Science
    • /
    • v.2 no.6
    • /
    • pp.82-89
    • /
    • 1997
  • In this paper, an adaptive speed controller with an FNN(Feedforward Neural Network) is proposed for servo motor drives. Generally, the motor system has nonlinearities in friction, load disturbance and magnetic saturation. It is necessary to treat the nonlinearities for improving performance in servo control. The FNN can be applied to control and identify a nonlinear dynamical system by learning capability. In this study, at first, a robust speed controller is developed by Lyapunov stability theory. However, the control input has discontinuity which generates an inherent chattering. To solve the problem and to improve the performances, the FNN is introduced to convert the discontinuous input to continuous one in error boundary. The FNN is applied to identify the inverse dynamics of the motor and to control the motor using coordination of feedforward control combined with inverse motor dynamics identification. The proposed controller is developed for an SR motor which has highly nonlinear characteristics and it is compared with an MRAC(Model Reference Adaptive Controller). Experiments on an SR motor illustrate te validity of the proposed controller.

  • PDF

Design of Current Controller for an Induction Motor using Robust Stability Theory (강인안정도 기법을 이용한 유도전동기의 전류 제어기 설계)

  • 박태식;유지윤
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.8 no.2
    • /
    • pp.165-172
    • /
    • 2003
  • In this paper, the new robust current control scheme is proposed for an Induction motor. The proposed design scheme of current controller tan obtain a specified stability margin through electrical parameter variation by using Kharitonov robust stability theory. The characteristics of the proposed design scheme are compared with those of a conventional scheme by computer simulation and its effectiveness and usefulness is verified by experiments on the 0.75kW induction motor drive.

The Role of Kinematics in Robot Development (로봇발전과 기구학의 역할)

  • Youm, Youngil
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.20 no.3
    • /
    • pp.333-344
    • /
    • 2014
  • This is the survey paper on the role of kinematics in robot development. The robot is considered as a form of mechanical systems which includes closed-chain loop system, open-chain loop system and closed and open switching system. To analyze these systems, kinematic notations has been developed in kinematics of mechanical theory since 1955 and has been applied in robotics. Several kinematic notations including Denavit-Hartenberg notations have been reviewed. The status of development of the spherical motor which has a great impact on the future robot advancement has reviewed, and research activity on a spherical motor and its application to 3-D spatial mechanisms at UNIST is introduced. For the open and closed switching mechanical systems, the bipedal robots' walking theories using Zero Moment Point are reviewed. And current status regarding bipedal robots based on newly developed passive dynamic walking theory is reviewed with the research activity at UNIST on this subject.

Development of a design theory of a pressure vessel with combined structure of the metal and the composite (금속재와 복합재 이종구조물로 된 압력용기의 설계이론 개발)

  • Lee Bang-Eop;Kim Won-Hoon;Koo Song-Hoe;Son Young-Il
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2006.05a
    • /
    • pp.61-65
    • /
    • 2006
  • A thery was developed to design a high pressure vessel with combined structure of the metal and the composite to withstand the pressure of several tens of thousands psias to reduce the weight of the impulse motor which produces high level of thrust within several tens of seconds. The elastic-plastic stress analyses were carried out to prove the validity of the design theory A combustion chamber of the impulse motor was designed by the design theory, fabricated, and tested by the hydraulic pressure and the static firings. The bursting pressures from the tests were compared to those predicted by tile design theory and the stress analyses and found to be almost the same. It will be possible to design the high pressure vessel with combined structure of the metal and the composite very easily by the proposed design theory.

  • PDF

Development of a Design Theory of a Pressure Vessel with Combined Structure of the Metal and the Composite (금속재와 복합재 이종구조물로 된 압력용기의 설계이론 개발)

  • Lee Bang-Eop;Kim Won-Hoon;Koo Song-Hoe;Son Young-Il
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.10 no.2
    • /
    • pp.23-30
    • /
    • 2006
  • A thery was developed to design a high pressure vessel with combined structure of the metal and the composite to withstand the pressure of several tens of thousands psias to reduce the weight of the impulse motor which produces high level of thrust within several tens of seconds. The elastic-plastic stress analyses were carried out to prove the validity of the design theory. A combustion chamber of the impulse motor was designed by the design theory, fabricated, and tested by the hydraulic pressure and the static firings. The bursting pressures from the tests were compared to those predicted by the design theory and the stress analyses and found to be almost the same. It will be possible to design the high pressure vessel with combined structure of the metal and the composite very easily by the proposed design theory.

A study on the magnetic flux distribution of 3-phase 4-pole induction motor by finite element method (유한요소법에 의한 삼상유도전동기의 자속분포해석에 관한 연구)

  • 임달호;현동석;임태빈
    • 전기의세계
    • /
    • v.30 no.4
    • /
    • pp.219-226
    • /
    • 1981
  • The magnetic field distribution in saturable iron part of electromagnetic energy conversion divices is defined by the nonlinear quasi-Poisson enquation that is described the electromagnetic field characteristics and satisfied the natural boundary condition. The solution of this equation is obtained by minimizing an energy functional by means of trial function that defined in triangular subregion of two-dimensional field region. As a result, the accuracy of the machine design is increased by use of its solution. In this respect, this study is developed the basic theory to analyze the magnetic flux distribution in saturable iron part and air gap of induction motor that its secondary part is short circuit by the variational principle, the minimized theory of energy functional, the application of F.E.M., and treatment of computer. As theoritical data compared with the practics, the validity of the theory in this study is supported by experimental findings.

  • PDF

Design on the Controller of Flexible Robot using Sliding Sector Control (슬라이딩 섹터 제어를 이용한 유연한 로봇 팔에 대한 제어기 설계)

  • Han, Jong-Kil;Bae, Sung-Hwan;Yang, Keun-Ho
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.5 no.5
    • /
    • pp.541-546
    • /
    • 2010
  • When a flexible arm is rotated by a motor about an joint axis, transverse vibration may occur. The motor torque should be controlled in such a way that the moter rotates by a specified angle, while simultaneously stabilizing vibration of the flexible arm so that it is arrested at the end of rotation. In this paper, the dynamic model of flexible robot arm is modeled by using Bernoulli-Euler beam theory and Lagrange equation. Nonlinear control with hysteresis deadzone using the sliding sector theory with continued input function in the sector is proposed.

A Development of Algorithm on Robust Adaptive Law in Adaptive mechanism showing Chaotic phenomenon (혼돈 현상을 보이는 적응기구에서의 강인한 적응법칙에 관한 알고리즘의 개발)

  • Jeon, Sang-Young;Yim, Wha-Yeong
    • Proceedings of the KIEE Conference
    • /
    • 1994.11a
    • /
    • pp.322-325
    • /
    • 1994
  • Mareel and Bitmead proved the presence of chaotic signal in random noise by applying dead beat control theory to adaptive mechanism. In this paper robust adaptive theory is proposed. With the property of chaotic signal that has order and law, the proposed theory can enhance the control Performance by applying the recursive algorithm that uses dynamic relation which have small correlation. The performance of proposed algorithm is demonstrated with the computer simulation of position control of electric motor. In this simulation, the adaptive low is adopted to control electric motor and the Presence of chaotic signal in feedback signal is proved by using several method such as time series, fourier spectrum phase portrait method.

  • PDF