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Abstract

In this paper, an adaptive speed controller with an FNN(Feedforward Neural Network) is proposed for servo motor drives. Generally, the
motor system has nonlinearities in friction, load disturbance and magnetic saturation. It is necessary to treat the nonlinearities for improving

performance in servo control. The FNN can be applied to control and identify a nonlinear dynamical system by learning capability. In this

study, at first, a robust speed controller is developed by Lyapunov stability theory. However, the control input has discontinuity which

generates an inherent chattering. To solve the problem and to improve the performances, the FNN is introduced to convert the discontinuous

input to continuous one in error boundary. The FNN is applied to identify the inverse dynamics of the motor and to control the motor

using coordination of feedforward control combined with inverse motor dynamics identification. The proposed controller is developed for
an SR motor which has highly nonlinear characteristics and it is compared with an MRAC(Model Reference Adaptive Controller). Experi-

ments on an SR motor illustrate the validity of the proposed controller.

I. Introduction

Speed control of motor drives is considered. It is assumed that
various friction torque and load disturbance can be described as
the nonlinear function of a rotor speed. The mathematical model
of the motor can be isolated to a linear and a nonlinear parts.
The nonlinear part may be treated as unmodelled dynamics. The
unmodelled dynamics which are always preéent to some degrees,
may cause difficulties and give poor performance in speed and
position control of the motor system. The motor controller is
usually implemented with PID algorithms. The PID controller
would be effective enough if the speed and accuracy requirements
of the control system are not critical. The usual way to optimize
the control action is to tune the PID gains, however this can not
cope with varying control environments or system nonlinearities
(1, 2]. '

Recently, microprocessor based control systems have become
more popular. Microprocessors can be used for implementing
modern control or intelligent algorithms which can cope with
varying environments as a result of load disturbance, process
nonlinearities and the change of plant parameters. Adaptive control
has predominantly dealt with generic model, where all parameters
are unknown. The common difficulty of adaptive algorithms lies
in the attempt to formulate the input-output relationship by means
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Fig. 1. The feedforward neural network.

of mathematical models, which may be difficult in many cases [3,
4].

Intelligent control systems provide a very good approach to
account for nonlinearities and disturbances. Intelligent controls prove
to be highly effective in controlling plants which do not have
detailed and accurate mathematical descriptions. An artificial
neural network consists of highly interconnected simple processing
elements called neuron. Neural networks can be placed into one
of three classes, recurrent, locally recurrent and nonrecurrent, based
on their feedback link conmection structures. A special type of
nonrecurrent neural networks is the FNN(feedforward neural net-
work), which consists of layers of neuron with weighted links
connecting the outputs of neurons in one layer to the inputs of
neurons in the next layer. A block diagram of the FNN is shown
in Fig. 1. The FNN can be used to identify and control nonlinear
plants. The control architecture with the FNN has following advan-
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Fig. 2. The coordination of feedforward control method.

tages. First, the input-output relationship of a dynamic model is
not required. Second, learning and control are processed on-line.
Third, error backpropagation through the plant is not required [5,
6, 71.

In this paper, an FNN based controller is developed for motor
speed control. The control structure is derived from CFCM
(coordination of feedforward control method). Fig. 2 is a block
diagram of CFCM. It is necessary for CFCM to design a feed-
back and a feedforward compensator. In this study, the feedback
controller which has robustness to the nonlinearities, is designed
by Lyapunov stability theory. However, this control algorithm which
generates a discontinuous input is similar to an SMC(sliding mode
controller). Therefore, the control system using only the feedback
controller has a inherent chattering. To solve the problem, the
feedforward controller with the FNN is introduced to convert the
discontinuous input to continuous one in an error boundary layer.
The FNN is applied to identify the inverse dynamics of the motor
and to control the motor using CFCM combined with inverse
motor dynamics identification. The proposed controller is applied
to an SR motor which has highly nonlinear characteristics. The
experimental sets consist of a 6/4 SR motor, classic inverter,
encoder and the microprocessor iMCS97, and the control input of
the SR motor is defined by switching angle. Experiments on the
SR motor illustrate the validity of the proposed controller.

IT. Mathematical Modeling and Controller
Design

The simple block diagram of the motor control system is
shown in Fig. 3. The mechanical part of a motor can be
described by following model[1, 2]

% = %{r—r/—r,) 4y
where @, 7, 7 T and J are the angular speed, the electrical
generated torque, the friction torque, the load torque and the
inertia of rotor, respectively.

The electrically generated 'torque(T) is generally produced by
the phase currents and rotor position of the motor. It is clear that
the motor is electronically commutated, that is, motor windings
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Fig. 3. The motor control system.

must be excited as the motor turns in order to develop requested
torque. Generally, in a DC motor and a vector controlled AC
motor, the generated torque is proposed to a phase current.
Howeveér, to satisfy this purpose, the motor and its drive system
must be ideally designed. The friction torque(tf) has been
extensively treated for the motor control. However, there is
considerable disagreement on the proper model. It is well
established that the friction torque is a nonlinear function of the
angular speed. The total moment inertia(J) and the load torque(Ty)
which are reflected to the motor axis, are generally a function of
the mechanical dimension of the rotor. Therefore, the motor
model can be expressed by the following differential form:

L~ ) + fu @

where x is the angular speed(#) and u is the electrical control
input which is defined by a designer. In (2), f{ix) and g(x) are
unknown but continuous and bounded and the sign of g(x) is
known. Therefore, the motor drive system is described as a
nonlinear plant. It is important to treat nonlinearities of the motor
in servo control.

In many applications, it is convenient to have a given system
follow an ideal model. The reference model specifying the motor
behavior expected form can be described by the following differ-
ential equation{3, 8]:

i’;’" = —Qpxy + by, 3)

where x, is the desired trajectory of the angular speed, r. is the
command input and a, is a positive constant. From (2), (3) and
the CFCM, the error dynamics between the actual motor and the
reference model is measured by the following equation:

e o et apt f2) ~ bt 8N st ur) ) @

where e=x—x,, u=u+u, urand u, which are shown in Fig. 2,
are the feedforward control input and the feedback control input.
The objective of the controller is to find a control law guarantee-
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ing that the error tends asymptotically to 0. For this purpose, the
Lyapunov function V= 4¢* is introduced. If the derivative of V is
negative in all t, then the error dynamics is asymptotically stable
in the sense of Lyapunov[8, 9]. The derivative of V is computed

as follow:
dv _ de
dt . dt )

=—g,0*+d QX+ )= b+t uy) ]

If the control input is selected as:

wy = —sgn(e) Um (6)

where, sna > || Uawd +1000+lbprd +le(mud 1

then the derivative of V is

Ly < ot te axt Ax)—bur.+e(xu; ]
—e - sgn(e) lla,d A +1b,rd +le(x)ef ]
< —ane tellad HAX) Fiburd +1g(0u] 1 Y

—e - sgn(e) [la,d+IA0 +1burd +lgln)ul ]
= —am22
It can thus be concluded that the error will go to 0[6]. If a plant
is linear, a high value of u., may make the error system stable.
However, the higher u.. is, the higher chattering occurs, because
this control input is discontinuous. Therefore, um. may be
adjusted for a suitable value in the desired performance or the
control system may have chattering reduction method. It is
difficult for nonlinear plants to select um.., because the control
input may be not proportional to the output of plant. Therefore, to
design um.s, many informations of the plant are needed. A.choice
of um: depends very much on the problem at hand. Different
problems may require um, which differs by several orders of
magnitude. The experiments and the simulations are mostly
needed to find satisfactory values. As a result, the robust control
input is designed by some experiments of nonlinear plant.
However, this controller has been poor performance because the
control input is discontinuous which generates chattering problem.
These problems are solved by the following modified control
input structure:

uptu;, lelde
u = ®)

us lel<e

where ¢ is a positive constant specified by the designer. The us
is nonzero only when the error is greater than e. That is, the
closed loop system with feedforward control input u is well
behaved in the sense that the error is not big( e >lel), then the
feedback control input u, is 0. In the other hand, if the error

Weight Update
Algorithm

Fig. 4. The adaptive linear element.

dynamics tends #o be unstable, the u, begins to operate for

‘ guaranteeing stable. For this purpose, the feedforward control

input u is designed by FNNs in the following section.
IMl. FNN :based Feedforward Controller

Neural networks have been widely used for the identification
and control of linear and nonlinear plants. A neuron is considered
to be an adaptive element. Its weights are modifiable depending
on the input signal and the associated response. An adaline
(adaptive linear element) which is simple adaptive process is
illustrated in Fig. 4. The Widrow-Hoff delta rule can be used to
train the adaline’s weight vector. The delta rule which minimizes
the mean square error can be obtained as follow[5, 7]:

'

Lok )

w = Wy
Kkt ' e+x"x

where k is the time index or iteration. wy, e; and x are the weight
vector of adaline, the error signal(y;y) and the inpﬁt vector in k,
respectively. [ and ¢ are positive constants. The error(e;) between
the desired output and the adaline output whose weights are
adjusted by the delta rule, converges asymptotically to 0, if and
only if O<u<2 and £>0[7, 9]. In (9), the output of the adaline is
constructed by trained weights and inputs, and normalized by a
threshold function. The various functions such as sigmoid and
saturation can be;iused as the threshold function. In this study, a
sgn( - ) function is considered. If the input vector(x) of the
adaline is replaced by sgn(x), that is,

sgn(x) = [sgn(x,) sgnlxy) ... sgn(x,) 17 (10)
then the delta rule is expressed as:

wear = wy + A28 oy
!

where £ is a positive constant. The error(es) also converges to O.

This algorithm is useful to implement simple and fast computa-

tions[3, 9].
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A block diagram of the multi-layer FNN was shown in Fig. 1.
The weight matrix update algorithms of this network are proposed
by:

Wiker = Win + AW, (12)
where AW, is defined as;

AWj,k: 7 {Yj_kSgn(Yj—l,k)T_Wi.k}
=12,..., n—1 (Hidden layer) 13)

Meyn_1,x

AWn'k = €

(Output layer)

where yi; are the output of each layer in k. If the eigenvalues.of
(I-M) are contained in the open unit disk of the complex plane,
then the output errors converge to 0. That is guaranteed by (11).
In the weight adaptation formula of hidden layer, 1>0 is a small
positive learning constant. The initial weight values are set to 0,
which corresponds to setting the entire characteristics surface to 0
at the beginning of training. The weight, which are built by the
outputs of priori layer, can be interpreted as iteratively updated
input signal values or memorized values to be learned. The
learning using (12) should eventually end up at learned values,
W, which are averaged input values over a number of FNN
learning steps{7].

A plant identification can be distinctly helpful in achieving the
desired output of the plant. The issue of identification is perhaps
of even greater importance in the field of adaptive control system.
The FNN can be used extensively in the upcoming dynamical
system identification scheme. The basic configuration for inverse
dynamics identification is illustrated in Fig. 5. The FNN receives
the plant output. The plant input provides the desired response
during training. The purpose of the identification is to find the
FNN with error that matches the plant input for a given set of
FNN output. The minimization of mean square error can be
achieved by learning techniques in (12). The simple or more
complex types of FNNs for plant identification can also be
erﬁp]oyed.

An FNN based feedforward controller is developed for speed
control of motor. The control structure which is derived from the
CFCM and FNNs, is illustrated in Fig. 6. Two FNNs are
presented for the motor system in an effort to improve the
CFCM. The first FNN is connected in such a way that gradually
learns to perform as the inverse of the unknown motor plant. The
second FNN has the same structure of the first FNN. The weights
of the second FNN have the (k-1)th weights of the first FNN at
time k. The second FNN at time k which is an exact copy of the
first FNN at time (k-1), generates the feedforward control
input(uy). If the weights of the first FNN converge, then the
weights of the second FNN also converge and the feedforward
control input is a constant value. If the identification is perfect,
then the error between the -plant output and the reference model
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Fig. 6. The FNN based controller.
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output converges to 0.
IV. Application to SR Motor

The performance of the proposed controller has been studied on
experiments using the nonlinear switching angle properties of the
SR(switched reluctance) motor. The experimental sets are illustrated
in Fig. 7. In experiments, the SR motor with 6 stator poles and 4
rotor poles is considered. The asymmetric inverter is used and the
controller is implemented with iIMCS97. The position sensor is
mounted on the motor shaft.

The SR motor consists of variable reluctance type motor and
switching inverter. The switching sequence of the power inverter
is controlled by rotor position signal provided from the position
sensor mounted on the motor shaft. The structure of the SR motor
is shown in Fig.8. The motor has doubly salient structure similar
to a VR step motor. The torque is generated by the minimum
reluctance principle. The instantaneous torque of the SR motor
can be expressed as[10, 11]:

= él%ﬁ 2 ' (14)
where p is the number of phase and L.(8), i, and O are the
inductance, the current of the n-th phase and the rotor position,
respectively. The torque is proportional to the variation of the
inductance and the square of the phase currents. When the SR
motor rotates in the positive direction, a motoring torque is
developed within the region of increasing inductance. No torque
is developed within the region of constant inductance and a
braking torque is developed within the region of decreasing
inductance. The speed of the SR motor can be controlled by a
switching angle. However, it is difficult to achieve the desired
performance because the developed torque is not proportional to
the switching angle. The switching angle, inductance profile and
phase current are shown in Fig. 9. The interval of between 8,,
and 8, is defined as the switching angle. The current wave form
varies according to the switching angle, and then the developed
torque also varies sequently. As a result, the speed of the motor
can be controlled by the switching angle.

The average torque can be expressed as a function of the
switching angle:

TOoy o7 00) = 7 [ zdo - (15)

where T, is the average torque a phase period. A which is the
period of the inductance, is defined as;

N
=

a=2z | 16)

=

where N, is the number of rotor pole. The relation between the
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switching angle and the steady-state speed of the SR motor is
shown in Fig. 10. The speed of the SR motor can be controlled
by Ben and Oy which is defined in Fig. 9. O~® of Fig. 10 are
the speed of the SR motor according to 8,, and each curve shows
the speed according to B.¢. When 8, is constant, if 8o moves 1o
lead direction, then both motoring torque and braking torque
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Fig. 12. The experimental result of MRAC.

decrease. If B¢ moves to lag direction, then both motoring torque
and braking torque increase. For high speed operation, an optimal
B. can be defined as a point where the summation of motoring
torque and braking torque is maximum. As a result, the speed of
the SR motor can be controlled by Qo The current according to
the varying O, is shown in Fig. 11.

The two layer FNN is used to identify the inverse dynamics of
the SR motor. The inputs of the first FNN are designed as n=3
(one speed and two changes of speed), that is, input vector is [0
Mok Awy]", M=[0.25], and the sampling time is 1[msec]. The
desired output of the first FNN is B(#) which consists of the
feedback control input B,(u;) and the feedforward control input 8
f(up, that is, u(=up+us) in (8) is defined as G(=0+0). The B¢ is
the output of the second FNN. The inputs of the second FNN are
the reference model ‘output vector, that is, [Bmx A®mk Ammk.l]T. The
parameters of reference model in (3) are selected as am=bm¥500
and r.=50, 70, 60[RPS]. :

The proposed controller is compared with an MRAC. If the SR
motor is assumed as a linear model, then the control input of the
MRAC can be designed as follows[3, 8]:

00}’ = klx + ko?’c (17)
where k; and k, which are the control gains, are updated as;
/é():?’e”c, /571:7’@95 (18)

where v is a positive constant(adaptive gain).

When the error of the speed is greater than 5[RPS], &, is
selected as 120° and when the error is smaller than -5[RPS], 8, is
selected as 70°. That means that the feedback control inputs are
defined in Fig. 9 and ¢ in (8) is 5[RPS].

Fig. 12 shows the experimental result of the MRAC. The speed
response has large oscillations. The performances of the MRAC
depend on the design parameters, such as the type of the
reference model, adaptive gains and sampling time. However, the
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Fig. 13, The experimental result of the proposed controller with-
out the feedforward controller.
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transition responses of the MRAC are poor performances in
various experiments.

Fig. 13 shows the experimental result of the proposed controller
without the feedforward controller. That means the feedback
controller is only used for the SR motor. The overshoot and
undershoot are decreased. However, the system has serious acoustic
noise and the switching angle and the speed have oscillation
continuously. That is similar to the chattering problem of sliding
mode control.

When the feedforward controller is designed by MRAC in (17),
the speed response is shown in Fig. 14. The speed response
which is compared with the previous two results has good
performance.

The experimental result of the proposed FNN based controller
is shown in Fig. 15. The speed response has less oscillation. That
is due to the leaming capability of FNN which makes the
adaptive mechanism insensitive. The performances of these con-
trollers are summarized in table 1. It shows that the proposed
FNN based controller has good performance over increasing steps.
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Table 1. The performance summary of experiments.
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References First reference Second reference Third reference

Rising Setting Max. Rising Settling Max. Rising Settling Max.
Controller Time Time Overshoot Time Time Overshoot Time Time Overshoot
MRAC 0.075 0.075 6.1 0.075 0.28 11.6 0.05 0.1 -8.5
Proposed Controller without | ) 0.025 4.1 0.05 005 43 0013 0013 3.1
feedforward controller

posed troll
Proposed Controller 0075 0.075 3.1 005 50 0.025 0.025 30
with MRAC scheme
FNN- based Controller 0.025 0.2 10 0.1 2.8 0.075 0.075 2.5
Rising Time, Settling Time : [sec], Max. Overshoot(Undershoot) : [%]
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Fig. 15. The experimental result of the FNN based controller.
V. Conclusion

In this paper, an FNN based adaptive speed controller for
motor systems and its application to an SR motor are presented.
The proposed controller which is based on the CFCM, consists of
a robust controller and two FNNs. The robust controller which is
designed by Lyapunov stability theory, makes the error converge
to zero. FNNs which are developed for the identification of the
motor dynamics and the generation of the feedforward control
input by adalines, operates to improve the performance of the
control system. A motor system exhibits nonlinear characteristics.
It is difficult for a simple algorithm to achieve the desired
performances. To solve these problems, the proposed controller is
effective. The SR motor is favored in many industrial applications
for its cost advantage and ruggedness. However, the SR motor
has high nonlinearities. The experimental results on the SR motor
show that the proposed controller has good performances.
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