• Title/Summary/Keyword: Motor delay

Search Result 280, Processing Time 0.026 seconds

A Novel Utilization Method of the Predicted Current in the High Performance PI Current Controller with a Control time delay (제어 시지연이 있는 고성능 PI 전류제어기에 대한 예측전류의 적용방법)

  • Lee, Jin-Woo
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.11 no.5
    • /
    • pp.426-430
    • /
    • 2006
  • This paper deals with a novel utilization method of the predicted current in the high performance PI current controller with a control time delay. The inevitable error of the predicted current in the linear servo drive using a permanent magnet linear synchronous motor is analyzed and a modified cross-coupling decoupling synchronous frame PI current controller is proposed in order to improve the current control response under both the control time delay and the inevitable current prediction error. Simulation and experimental results show that the proposed current controller has an improved current control performance under both the control time delay and the inevitable current prediction error in the servo drive system.

Distributed Control of DC Servo Motor on LonWorks-IP Virtual Device Network for Predictive and Preventive Maintenance (LonWorks-IP 가상 디바이스 네트워크상에서 예지 및 예방보전을 위한 DC 서보모터의 분산제어)

  • Song, Ki-Won
    • Journal of the Korean Society of Safety
    • /
    • v.21 no.4 s.76
    • /
    • pp.25-32
    • /
    • 2006
  • LonWorks over IP(LonWorks-IP) virtual device network(VDN) is an integrated form of LonWorks device network and IP data network. In especially real-time distributed servo applications on the factory floor, timely response is essential for predictive and preventive maintenance. The time delay in servo control on LonWorks-IP based VDN has highly stochastic nature. LonWorks-IP based VDN induced transmission delay deteriorates the performance and stability of the real-time distributed control system and can't give an effective preventive and predictive maintenance. In order to guarantee the stability and performance of the system, and give an effective preventive and predictive maintenance, LonWorks-IP based VDN induced time-varying uncertain time delay needs to be predicted and compensated. In this paper new Pill control scheme based on Smith predictor, disturbance observer and band pass filter is proposed and tested through computer simulation about position control of DC servo motor. It is shown that how can the proposed control scheme be designed to minimize the effects of uncertain varying time delay and model uncertainties. The validity of the proposed control scheme is compared and demonstrated with the comparison of internal model controllers(IMC) based on Smith predictor with and without disturbance observer.

Sensing of Three Phase PWM Voltages Using Analog Circuits (아날로그 회로를 이용한 3상 PWM 출력 전압 측정)

  • Jou, Sung-Tak;Lee, Kyo-Beum
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.64 no.11
    • /
    • pp.1564-1570
    • /
    • 2015
  • This paper intends to suggest a sensing circuit of PWM voltage for a motor emulator operated in the inverter. In the emulation of the motor using a power converter, it is necessary to measure instantaneous voltage at the PWM voltage loaded from the inverter. Using a filter can generate instantaneous voltage, while it is difficult to follow the rapidly changing inverter voltage caused by the propagation delay and signal attenuation. The method of measuring the duty of PWM using FPGA can generate output voltage from the one-cycle delay of PWM, while the cost of hardware is increasing in order to acquire high precision. This paper suggests a PWM voltage sensing circuit using the analogue system that shows high precision, one-cycle delay of PWM and low-cost hardware. The PWM voltage sensing circuit works in the process of integrating input voltage for valid time by comparing levels of three-phase PWM input voltage, and produce the output value integrated at zero vector. As a result of PSIM simulation and the experiment with the produced hardware, it was verified that the suggested circuit in this paper is valid.

Estimation of Brain Connectivity during Motor Imagery Tasks using Noise-Assisted Multivariate Empirical Mode Decomposition

  • Lee, Ki-Baek;Kim, Ko Keun;Song, Jaeseung;Ryu, Jiwoo;Kim, Youngjoo;Park, Cheolsoo
    • Journal of Electrical Engineering and Technology
    • /
    • v.11 no.6
    • /
    • pp.1812-1824
    • /
    • 2016
  • The neural dynamics underlying the causal network during motor planning or imagery in the human brain are not well understood. The lack of signal processing tools suitable for the analysis of nonlinear and nonstationary electroencephalographic (EEG) hinders such analyses. In this study, noise-assisted multivariate empirical mode decomposition (NA-MEMD) is used to estimate the causal inference in the frequency domain, i.e., partial directed coherence (PDC). Natural and intrinsic oscillations corresponding to the motor imagery tasks can be extracted due to the data-driven approach of NA-MEMD, which does not employ predefined basis functions. Simulations based on synthetic data with a time delay between two signals demonstrated that NA-MEMD was the optimal method for estimating the delay between two signals. Furthermore, classification analysis of the motor imagery responses of 29 subjects revealed that NA-MEMD is a prerequisite process for estimating the causal network across multichannel EEG data during mental tasks.

Motor Speed and Phase Angle Detection Using A Sinusoidal AC Tacho-Generator (정현파 교류 타코제너레이터를 이용한 전동기속도 및 회전각 검출)

  • Choi, Jung-Soo;Cho, Kyu-Min;Shin, Jae-Hwa
    • Proceedings of the KIEE Conference
    • /
    • 1996.07a
    • /
    • pp.415-419
    • /
    • 1996
  • This paper presents motor speed and phase angle detection method using a sinusoidal AC tachogenerator. The 2-phase or 3-phase output tacho-generator can be adopted, and its' output voltages must have sinusoidal waveforms. Because the detection algorithm is simple, the proposed method can be implemented with analog devices of microprocessor conveniently. And the proposed method has a very short detection delay time. Especially in the analog implementation, there is no delay time without the settling time of analog devices. With the Experimental results, it is verified that the proposed method can accurately detect the instantaneous motor speed and phase over the wide ranges.

  • PDF

A Study on the Design and the Analysis of Hybrid Inverter (하이브리드 인버터 설계 및 특성해석에 관한 연구)

  • 오진석;김윤식;노창주
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.19 no.3
    • /
    • pp.99-106
    • /
    • 1995
  • PWM(Pluse Width Modulation) induction motor drives are being used in greater numvers through a wide variety of industrial and commercial applications. In this paper, a new speed control algorithm (hybrid algorithm) for induction motor drives that uses regular sampled PWM and harmonic elimination PWM is presented. The hybrid algorithm in implemeted on the computer to obtain solutions from the calculation equations of the width of the pulses and the firing angles for the selected harmonic elimination. this paper describes the time delay effects and the suitable compensating methods moreover, optical transmission system for driving signals is proposed and is compared with general trnasmission system. The hybrid inverter was tested with induction motor, and these test results are shown that this hybrid inverter closely approximates and exhibits many of the desirable performance characteristic distortions and eliminated the objectionable harmonics. Finally, detailed experimental investigation of the proposed hybrid scheme in presented.

  • PDF

Motor speed and revolution angle detection using a sinusoidal AC tacho-generator (정현파 교류 타코제너레이터를 이용한 전동기 속도 및 회전각 검출)

  • 최정수;유완식;조규민
    • Journal of the Korean Institute of Telematics and Electronics S
    • /
    • v.34S no.6
    • /
    • pp.94-103
    • /
    • 1997
  • This paper presents motor speed and revolution angle detection method using a sinusoidal AC tacho-generator. The 2-phase or 3-phase output tacho-generator can be adopted, and its' output voltages must have sinusoidal waveforms. Because the detection algorithm is simple, the proosed method can be implemented with analog devices or microprocessor conveniently. And the proposed method has a very short detection delay time. Especially in the analog implementation, there is no delay time without the settling time of analog devices. With the experimental results, it is verified that the proposed method can acculately detect the instantaneous motor speed and revolution angle over the wide ranges.

  • PDF

Improvement of Torque Ripple Using Compensation for the Phase Delay of Winding Inductance on Brushless DC Motor (상 권선 인덕턴스의 위상지연 보상에 의한 브러시리스 직류 전동기의 토크 리플 개선)

  • 유시영;이두수
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.6 no.2
    • /
    • pp.180-190
    • /
    • 2001
  • In this paper, a method of reducing torque ripples caused by phase winding inductances in BLDCM(Brushless DC Motor) drives is presented. In order to compensate the inductive current delays, commutation angle is controlled by the value compensating angle varied in accordance with rotational speed. Using the microprocessor AVR 8515, the proposed compensator is implemented and experiments are done with a 4-pole 3-phase BLDCM. The results show the remarkable reduction of torque ripple at whole speed ranges.

  • PDF

Study on Combustion Characteristics of Kick Motor Ignition Transient (킥모터 점화 초기 연소 특성 연구)

  • Koh, Hyeon-Seok;Kil, Gyoung-Sub;Cho, In-Hyun
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2010.11a
    • /
    • pp.705-706
    • /
    • 2010
  • The design analysis for the ignition transient combustion characteristics of a Kick Motor igniter indicated that the initial pressure condition would delay ignition time within a range from 100 to 500 ms. In the development tests, we confirmed that the igniter could provide the acceptable energy to ignite the main propellant at ignition transient.

  • PDF

Speed Sensorless Stator Flux-Oriented Control of Induction Motor in the Field Weakening Region Using Luenberger Observer (루엔버거 관측기를 이용한 약계자 영역에서 유도전동기의 속도 센서리스 고정자자속 기준제어)

  • Kuen Tae-Sung;Shin Myoung-Ho;Hyun Dong-Seok
    • Proceedings of the KIPE Conference
    • /
    • 2002.11a
    • /
    • pp.3-6
    • /
    • 2002
  • In a conventional speed sensorless stator flux-oriented(SFO) induction motor drive system, when the estimated speed is transformed into the sample-data model using the first-forward difference approximation, the sampled data model has a modeling error which, in turn, produces an error in the rotor speed estimation. The error included in the estimated speed is removed by the use of a low pass filter (LPF). As the result, the delay of the estimated speed occurs in transients by the use of the LPF This paper investigates the problem of a conventional speed sensorless SFO system due to the delay of estimated speed in the filed weakening region. In addition, this paper proposes a method to estimate exactly speed by using Luenberger observer, The proposed method is verified by experiment with a 5-hp induction motor drive.

  • PDF