• Title/Summary/Keyword: Motor Driven Inverter

Search Result 186, Processing Time 0.023 seconds

Detection of Rotor Bar Faults in Field Oriented Controlled Induction Motors

  • Akar, Mehmet
    • Journal of Power Electronics
    • /
    • v.12 no.6
    • /
    • pp.982-991
    • /
    • 2012
  • In this study, a new method has been presented for the detection of broken rotor bar (BRB) faults in inverter driven induction motors controlled via Field Oriented Control (FOC). To this end, a FOC controlled induction motor with a BRB fault was modeled using the Matlab/Simulink program. Experiments were carried out using the prepared simulation model at various loads and operating speeds. The motor current and speeds were monitored for healthy, 1, 2 and 3 BRB faults. The Resampling Based Order Tracking Analysis (RB-OTA) method was applied to the monitored signals. The obtained results were compared by using the classic Fast Fourier Transform (FFT) method. When the obtained results were analyzed via the FFT method no information regarding any faults was determined in the run up or run down regions of the motor and the presented method gave very good results. The reliability of the proposed method was validated with experimental results. The main innovative part of this study is that the RB-OTA method was implemented on the induction motor current signal for detecting BRB faults.

A study on the Characteristics of linear compressor drive systems (선형 압축기 구동시스템 특성에 관한 연구)

  • Ahn J.R.;Chun T.W.;Lee H.H.;Kim H.G.;Nho E.C.
    • Proceedings of the KIPE Conference
    • /
    • 2003.07a
    • /
    • pp.424-429
    • /
    • 2003
  • A reciprocating compressor with a rotary motor used in a refrigerator has low efficiency, because it has the large mechanical losses due to the crank mechanism. The linear compressor which has the free piston driven by a linear motor, was developed to increase the efficiency of compressor by reducing mechanical losses. The TRIAC has been widely used for controlling the piston, because it has simple structure. However, as it is able to control only stator voltage, it is very difficult to obtain good efficiency. Recently, PWM inverter which is able to control the voltage as well as the frequency, is applied to linear compressor drive system to overcome above problem. In this paper, the variations for efficiency and power factor of linear compressor are investigated by changing both the mechanical resonant frequency and electrical resonant frequency of linear compressor, and also the inverter frequency The optimum relationships between both resonant frequencies and the inverter frequency is derived in order to obtain the maximum efficiency and also good power factor.

  • PDF

Electromagnetic Noise Reduction of Reciprocating Compressor using Random PWM (랜덤 PWM을 이용한 왕복동식 압축기의 전자기소음 저감)

  • 조관열;양순배;김학원
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.5 no.2
    • /
    • pp.200-207
    • /
    • 2000
  • Recently, it is increased to apply the inverter system to household electrical appliances, especially in the air c conditioners, refrigerators and washing machines, to reduce the power consumption and the acoustic noise by t the low speed operation, and to make their functions more comfortable for human beings. For the inverter s systems, however, it is highly required to reduce the undesirable electromagnetic noise and psychoacoustic n noise generated by PWM for variable speed operation. In this paper, the electromagnetic noise for the d detenninistic PWM and random PWM for the reciprocating compressors driven by the brusWess dc motor was a analyzed. It was also verified through the experiment that the elt'Ct$\tau$omagnetic noise was reduced and the s sound quality was improved by applying the random PWM.

  • PDF

Design Considerations for Low Voltage Claw Pole Type Integrated Starter Generator (ISG) Systems

  • Lee, Geun-Ho;Choi, Geo-Seung;Choi, Woong-Chul
    • Journal of Power Electronics
    • /
    • v.11 no.4
    • /
    • pp.527-532
    • /
    • 2011
  • Due to the need for improved fuel consumption and the trend towards increasing the electrical content in automobiles, integrated starter generator (ISG) systems are being considered by the automotive industry. In this paper, in order to change the conventional generator of a vehicle, a belt driven integrated starter generator is considered. The overall ISG system, the design considerations for the claw pole type AC electric machine and a low voltage very high current power stage implementation are discussed. Test data on the low voltage claw pole type machine is presented, and a large current voltage source DC/AC inverter suitable for low voltage integrated starter generator operation is also presented. A metal based PCB (Printed Circuit Board) power unit to attach the 4-parallel MOS-FETs is used to achieve extremely high current capability. Furthermore, issues related to the torque assistance during vehicle acceleration and the generation/regeneration characteristics are discussed. A prototype with the capability of up to 1000 A and 27 V is designed and built to validate the kilo-amp inverter.

A development of 10kW BLAC drive inverter for neighborhood electric vehicle (소형 근거리 이동용 전기자동차(NEV)용 10kW급 BLAC 구동인버터 개발)

  • LEE, Y.K;KIM, E.K;KIM, S.I;Hong, C.H;Fang, Liang;Mok, H.S
    • Proceedings of the KIPE Conference
    • /
    • 2011.07a
    • /
    • pp.130-131
    • /
    • 2011
  • This paper deals with 10kW BLAC drive inverter for neighborhood electric vehicle. First it introduces about hardware structure of inverter driven using 72volts battery. Then it explains motor control algorithm. Also performance of BLAC drive system is confirmed through experiments.

  • PDF

Method for Damping Resonant Voltages on the Output LC Filter of PWM Inveter (PWM인버터의 출력 LC필터에 의한 공진전압 억제 기법)

  • Choi G. J.;Chun T. W.;Lee H. H.;Nho E. C.;Kim H. G.
    • Proceedings of the KIPE Conference
    • /
    • 2004.07a
    • /
    • pp.415-419
    • /
    • 2004
  • The U filter has been generally used to filter the output voltage of PWM inverter to the sinusoidal waveform. The resonant voltage on the output voltage of PWM inverter may be generated due to LC filter. This paper proposed the algorithm to damp the resonant voltage using the virtual resistor without decreasing the efficiency by the power loss in the real resistor The method is appled to the vector controlled induction motor driven by the PWM inverter with the LC filter. The simulation results are carried out to verify the performances of the proposed algorithm.

  • PDF

Compensating for the Neutral-Point Potential Variation in Three-Level Space-Vector PWM Method (3-레벨 인버터 공간벡터 변조시의 중성점 전위 변동 보상법)

  • Seo Jae Hyeong;Kim Kwang Seob;Bang Sang Seok;Choi Chang Ho
    • Proceedings of the KIPE Conference
    • /
    • 2001.07a
    • /
    • pp.475-478
    • /
    • 2001
  • In performing the three-level SVPWM, it is nearly impossible to control the neutral-point potential exactly to the half of the dc-link voltage at all times. Therefore the inverter would produce an erroneous output voltage by this voltage unbalance. So the voltage unbalance has to be compensated in doing PWM, when the voltage unbalance occurs whether it is small or large, to make the inverter output voltage follow the reference voltage exactly the same. In this paper, a new compensating method for the neutral-point potential variation in a three-level inverter space vector PWM (SVPWM) is presented. By using the proposed method, the output voltage of the inverter can be made same as the reference voltage and thus the current and torque ripple of the inverter driven motor can be greatly improved even if the voltage unbalance is quite large. The proposed method is verified experimentally with a 3-level IGBT inverter.

  • PDF

PFC Bridge Converter for Voltage-controlled Adjustable-speed PMBLDCM Drive

  • Singh, Sanjeev;Singh, Bhim
    • Journal of Electrical Engineering and Technology
    • /
    • v.6 no.2
    • /
    • pp.215-225
    • /
    • 2011
  • In this paper, a buck DC-DC bridge converter is used as a power factor correction (PFC) converter for feeding a voltage source inverter (VSI) based permanent magnet brushless DC motor (PMBLDCM) drive. The front end of the PFC converter is a diode bridge rectifier (DBR) fed from single phase AC mains. The PMBLDCM is used to drive the compressor of an air conditioner through a three-phase voltage source inverter (VSI) fed from a variable voltage DC link. The speed of the air conditioner is controlled to conserve energy using a new concept of voltage control at a DC link proportional to the desired speed of the PMBLDC motor. Therefore, VSI operates only as an electronic commutator of the PMBLDCM. The current of the PMBLDCM is controlled by setting the reference voltage at the DC link as a ramp. The proposed PMBLDCM drive with voltage control-based PFC converter was designed and modeled. The performance is simulated in Matlab-Simulink environment for an air conditioner compressor load driven through a 3.75 kW, 1500 rpm PMBLDC motor. To validate the effectiveness of the proposed speed control scheme, the evaluation results demonstrate improved efficiency of the complete drive with the PFC feature in a wide range of speed and input AC voltage.

Motor Drive System Analysis and Controller Design for Fuel cell Electronics Vehicle (연료전지 전기자동차 전력 구동시스템 분석 및 전동기 구동시스템 제어기 설계)

  • Lee, Myung-Jin;Park, In-Duck;Kim, Si-Kyung
    • Proceedings of the KIEE Conference
    • /
    • 2004.11c
    • /
    • pp.484-486
    • /
    • 2004
  • In this paper, the power electronics requirement and the controls of an induction motor for fuel cell electric vehicle system are presented. The power topology is selected based on performance, cost, size, volume, manufacturability, component count and simplicity. Another highlight of the topology is the reduction of battery bank and its control strategy. The proposed approach consists a full-bridge DC/DC converter to boost the fuel cell voltage. The induction motor operated with vector control is driven by a three-phase PWM inverter supplied by the DC-link voltage. The investigation of the electric vehicle performed due to parameter variation of the induction motor has been presented.

  • PDF

Speed Control of Induction Motor Using Anti-windup Integral-Proportional Controller (반포화 적분-비례제어기를 이용한 유도전동기의 속도제어)

  • 정재호
    • Proceedings of the KIPE Conference
    • /
    • 2000.07a
    • /
    • pp.215-218
    • /
    • 2000
  • The windup phenomenon appears and degrades control performance when a controller with integrating action is used and the plant input is limited. An anti-windup integral -proportional(IP) controller is proposed for the variable-speed motor drives and it is experimentally applied to the speed control of a vector-controlled induction motor driven by a pulse width modulated (PWM) voltage source inverter(VSI). Although the operating conditions like motor load and speed command is changed under the limited plant input it is experimentally verified that the speed response has much improved performance such as no overshoot and fast settling time and the maximum plant input is also effectively utilized.

  • PDF