• Title/Summary/Keyword: Motor Drive System

Search Result 1,609, Processing Time 0.029 seconds

A Study on Fire Suppression Measures Used in Wooden Temples (목조 사찰화재의 유형별 진압대책에 관한 연구)

  • Ko, Gi-Bong;Lee, Si-Young;Chae, Jin
    • Fire Science and Engineering
    • /
    • v.26 no.4
    • /
    • pp.10-17
    • /
    • 2012
  • This study classifies the fire suppression measures implemented by wooden temples into four types according to availability of the pump trucks (water tanks) at the fire sites. And this study outlines the strategies and methods based on each type of fire suppression measure. The results show that the fire suppression strategy applied in general buildings is also employed in temples where pump trucks (water tanks) and fire-fighting water are available. For temples where trucks and water are not available, the helicopter, water bag, fire suppression strategy focused on water supply link, automatic transmission system of a fire engine's level by using radio communication network, and water bladder are used. In addition, general four-wheel-drive vehicles equipped with fire fighting tools such as motor pump, hose, nozzle, and water bladder should be deployed in fire stations around the temples. A fire suppression strategy using A-type ladders is also required.

Control and Analysis of an Integrated Bidirectional DC/AC and DC/DC Converters for Plug-In Hybrid Electric Vehicle Applications

  • Hegazy, Omar;Van Mierlo, Joeri;Lataire, Philippe
    • Journal of Power Electronics
    • /
    • v.11 no.4
    • /
    • pp.408-417
    • /
    • 2011
  • The plug-in hybrid electric vehicles (PHEVs) are specialized hybrid electric vehicles that have the potential to obtain enough energy for average daily commuting from batteries. The PHEV battery would be recharged from the power grid at home or at work and would thus allow for a reduction in the overall fuel consumption. This paper proposes an integrated power electronics interface for PHEVs, which consists of a novel Eight-Switch Inverter (ESI) and an interleaved DC/DC converter, in order to reduce the cost, the mass and the size of the power electronics unit (PEU) with high performance at any operating mode. In the proposed configuration, a novel Eight-Switch Inverter (ESI) is able to function as a bidirectional single-phase AC/DC battery charger/ vehicle to grid (V2G) and to transfer electrical energy between the DC-link (connected to the battery) and the electric traction system as DC/AC inverter. In addition, a bidirectional-interleaved DC/DC converter with dual-loop controller is proposed for interfacing the ESI to a low-voltage battery pack in order to minimize the ripple of the battery current and to improve the efficiency of the DC system with lower inductor size. To validate the performance of the proposed configuration, the indirect field-oriented control (IFOC) based on particle swarm optimization (PSO) is proposed to optimize the efficiency of the AC drive system in PHEVs. The maximum efficiency of the motor is obtained by the evaluation of optimal rotor flux at any operating point, where the PSO is applied to evaluate the optimal flux. Moreover, an improved AC/DC controller based Proportional-Resonant Control (PRC) is proposed in order to reduce the THD of the input current in charger/V2G modes. The proposed configuration is analyzed and its performance is validated using simulated results obtained in MATLAB/ SIMULINK. Furthermore, it is experimentally validated with results obtained from the prototypes that have been developed and built in the laboratory based on TMS320F2808 DSP.

A Study on Vibration & Noise Reduction of Fast Back Feeding Device for Manufacturing Process (제조공정용 Fast Back 이송장치 진동·소음 저감에 관한 연구)

  • Han, Doo-Hee;Lee, Seung-Hun;Son, Yung-Deug
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.8
    • /
    • pp.642-648
    • /
    • 2019
  • This paper presents a fast back-type transfer device for snack food processing that uses the inertia of transferred material. A conventional conveying system is a drive system that uses a belt conveyor and mechanical crank, which generate noise and vibration and cause environmental pollution. Vibration and noise are reduced in the proposed fast back feeding device by using a counterweight. The crank drive unit was replaced with a linear servomotor, and an equilibrium device was designed to balance the force due to acceleration. This makes it is possible to adjust the forward and backward speed and acceleration through PLC control. A vibration damper device offsets the vibration force of the periodic shock form. The main cause of the vibration was identified through vibration analysis, and reduction measures were established. We verified the effectiveness of the vibration by making a prototype and performing about 10 vibration tests. Because no mechanical transducer is needed, energy loss, noise, and vibration do not occur, and the operating speed is not limited.

Problems of Stator Flux Estimation in DTC of PMSM Drives

  • Kadjoudj, M.;Golea, N.;Benbouzid, M.E.H
    • Journal of Electrical Engineering and Technology
    • /
    • v.2 no.4
    • /
    • pp.468-477
    • /
    • 2007
  • The DTC of voltage source inverter-fed PMSMs is based on hysteresis controllers of torque and flux. It has several advantages, namely, elimination of the mandatory rotor position sensor, less computation time, and rapid torque response. In addition, the stator resistance is the only parameter, which should be known, and no reference frame transformation is required. The DTC theory has achieved great success in the control of induction motors. However, for the control of PMSM drives proposed a few years ago, there are many basic theoretical problems that must be clarified. This paper describes an investigation into the effect of the zero voltage space vectors in the DTC system and points out that if using it rationally, not only can the DTC of the PMSM drive be driven successfully, but torque and flux ripples are reduced and overall performance of the system is improved. The implementation of DTC in PMSM drives is described and the switching tables specific for an interior PMSM are derived. The conventional eight voltage-vector switching table, which is namely used in the DTC of induction motors does not seem to regulate the torque and stator flux in a PMSM well when the motor operates at low speed. Modelling and simulation studies have both revealed that a six voltage-vector switching table is more appropriate for PMSM drives at low speed. In addition, the sources of difficulties, namely, the error in the detection of the initial rotor position, the variation of stator resistance, and the offsets in measurements are analysed and discussed.

Application of a Fuzzy Controller with a Self-Learning Structure (자기 학습 구조를 가진 퍼지 제어기의 응용)

  • 서영노;장진현
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.19 no.6
    • /
    • pp.1182-1189
    • /
    • 1994
  • In this paper, we evaluate the performance of a fuzzy controller with a self-learning structure. The fuzzy controller is based on a fuzzy logic that approximates and effectively represents the uncertain phenomena of the real world. The fuzzy controller has control of a plant with a fuzzy inference logic. However, it is not easy to decide the membership function of a fuzzy controller and its controlrule. This problem can be solved by designing a self-learning controller that improves its own contropllaw to its goal with a performance table. The fuzzy controller is implemented with a 386PC, an interface board, a D/A converter, a PWM(Pulse Width Modulation) motor drive-circuit, and a sensing circuit, for error and differential of error. Since a Ball and Beam System is used in the experiment, the validity of the fuzzy controller with the self-learning structure can be evaluated through the actual experiment and the computer simulation of the real plant. The self-learning fuzzy controller reduces settling time by just under 10%.

  • PDF

Development and Evaluation of Smart Secondary Controls Using iPad for People with Hemiplegic Disabilities

  • Song, Jeongheon;Kim, Yongchul
    • Journal of the Ergonomics Society of Korea
    • /
    • v.34 no.2
    • /
    • pp.85-101
    • /
    • 2015
  • Objective: The purpose of this study was to develop and evaluate smart secondary controls using iPad for the drivers with physical disabilities in the driving simulator. Background: The physically disabled drivers face problems in the operation of secondary control devices that accept a control input from a driver for the purpose of operating the subsystems of a motor vehicle. Many of conventional secondary controls consist of small knobs or switches that physically disabled drivers have difficulties in grasping, pulling or twisting. Therefore, their use while driving might increase distraction and workload because of longer operation time. Method: We examined the operation time of conventional and smart secondary controls, such as hazard warning, turn signal, window, windshield wiper, headlights, automatic transmission and horn. The hardware of smart secondary control system was composed of iPad, wireless router, digital input/output module and relay switch. We used the STISim Drive3 software for driving test, customized Labview and Xcode programs for interface control of smart secondary system. Nine subjects were involved in the study for measuring operation time of secondary controls. Results: When the driver was in the stationary condition, the average operation time of smart secondary devices decreased 32.5% in the normal subjects (p <0.01), 47.4% in the subjects with left hemiplegic disabilities (p <0.01) and 38.8% in the subjects with right hemiplegic disabilities (p <0.01) compared with conventional secondary devices. When the driver was driving for the test in the simulator, the average operation time of smart secondary devices decreased 36.1% in the normal subjects (p <0.01), 41.7% in the subjects with left hemiplegic disabilities (p <0.01) and 34.1% in the subjects with right hemiplegic disabilities (p <0.01) compared with conventional secondary devices. Conclusion: The smart secondary devices using iPad for people with hemiplegic disabilities showed significant reduction of operation time compared with conventional secondary controls. Application: This study can be used to design secondary controls for adaptive vehicles and to improve the quality of life of the people with disabilities.

Field Application of H-Bridge Multi-level Inverter for Fluidized Bed Combustion Boiler Secondary Air Fan (200MW 석탄화력 순환 유동층 보일러 이차공기송풍기용 H-브릿지 멀티레벨 인버터 현장적용)

  • Kim, Bong-Suck;Ryu, Ho-Seon
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.12 no.5
    • /
    • pp.424-431
    • /
    • 2007
  • This thesis proposed H-Bridge Multi-Level Inverter for Fluidized Bed Combustion Boiler Secondary Air Fan in 200MW thermal power plant. The adjustable speed drive systems improve the efficiency in lightly load condition and extend the life span of motor by limiting the over current at starting. H-Bridge Multi-level Inverter is composed of the several series low voltage power cell inverters, which have the independent isolated do link, in each phase. KEPRI(Korea Electric Power Research Institute) has successfully completed to develop, install, and commission H-Bridge Multi-level Inverter(6.6kV, 1MVA). This thesis gives a full detail about H-Bridge Multi-level Inverter, proposed boiler DCS(Distributed Control System) logic, and commissioning test result.

Design of Cruise Control System using Piece-wised Control for Electric Vehicle (구간제어기법을 이용한 전기 자동차의 정속주행용 속도제어기의 설계)

  • Lee, Yongjun;Ryoo, Youngjae
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.23 no.4
    • /
    • pp.281-285
    • /
    • 2013
  • In this paper, a design scheme of a cruise control system for an electric vehicle using piece-wised PD control is proposed. Cruise control of electric vehicles is one of the major performance elements. Drive motors having linear characteristics ideally is required in order to achieve the cruise driving. But practical motors have nonlinear characteristics and the performance of the motors can be improved by the closed-loop control to compensate it. In this paper, we improved the performance of by applying piece-wised PD control because the driving motors having nonlinear characteristics are difficult to obtain adequate performance only using closed-loop control. In order to test the proposed method, the experiments were carried out by applying the proposed method after setting up an electric vehicle equiped with a driving motors having large nonlinear characteristics. The experiment results of the proposed piece-wised PD control shows better performance than that of closed-loop control.

Development of Power Distribution Control Strategy for Plug-in Hybrid Electric Vehicle using Neural Network (인공신경망을 이용한 플러그인 하이브리드 차량의 동력분배제어전략 개발)

  • Sim, K.H.;Lee, S.J.;Lee, J.S.;Namkoong, C.;Han, K.S.;Hwang, S.H.
    • Journal of Drive and Control
    • /
    • v.12 no.3
    • /
    • pp.18-24
    • /
    • 2015
  • The plug-in hybrid electric vehicle has a high fuel economy and can be driven long distances. Its different modes include the electric vehicle, hybrid electric vehicle, and only engine operating mode. A power management strategy is important to determine which mode should be selected. The strategy makes the vehicle more efficient using appropriate power sources for driving. However, the strategy usually needs a driving speed profile which is future driving cycle. If the profile is known, the strategy easily determines which mode is driven efficiently. However, it is difficult to estimate the speed profile for a real system. To address this problem, this paper proposes a new power distribution strategy using a neural network. The average speed and driving range are used as input parameters to train the neural network system. The strategy determines a limit for the use of the battery and the desired power is distributed between the engine and the motor simultaneously. Its fuel economy can increase by improving the basic strategy.

Comparison of Control Strategies for Military Series-Type HEVs in Terms of Fuel Economy Based on Vehicle Simulation (시뮬레이션을 이용한 군용 직렬형 HEV 의 주행 전략에 따른 연비 성능 비교에 관한 연구)

  • Jung, Dae-Bong;Kim, Hyung-Jun;Kang, Hyung-Mook;Park, Jae-Man;Min, Kyoung-Doug;Seo, Jung-Il
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.36 no.1
    • /
    • pp.31-36
    • /
    • 2012
  • Military vehicles, compared to conventional vehicles, require higher driving performance, quieter operation, and longer driving distances with minimal fuel supplies. The series hybrid electric vehicle can be driven with no noise and has high initial startup performance, because it uses only a traction motor that has a high startup torque to drive the vehicle. Moreover, the fuel economy can be improved if the vehicle is hybridized. In series hybrid electric vehicles, the electric generation system, which consists of an engine and a generator, supplies electric energy to a battery or traction motor depending on the vehicle driving state and battery state of charge (SOC). The control strategy determines the operation of the generation system. Thus, the fuel economy of the series hybrid electric vehicle relies on the control strategy. In this study, thermostat, power-follower, and combined strategies were compared, and a 37% improvement in the fuel economy was implemented using the combined control strategy suggested in this study.