IEIE Transactions on Smart Processing and Computing
/
제3권3호
/
pp.118-127
/
2014
This paper presents an efficient motion and disparity prediction method for multi-view video coding based on the high efficient video coding (HEVC) standard. The proposed method exploits inter-view candidates for effective prediction of the motion or disparity vector to be coded. The inter-view candidates include not only the motion vectors of adjacent views, but also global disparities across views. The motion vectors coded earlier in an adjacent view were found to be helpful in predicting the current motion vector to reduce the number of bits used in the motion vector information. In addition, the proposed disparity prediction using the global disparity method was found to be effective for interview predictions. A multi-view version based on HEVC was used to evaluate the proposed algorithm, and the proposed correspondence prediction method was implemented on a multi-view platform based on HEVC. The proposed algorithm yielded a coding gain of approximately 2.9% in a high efficiency configuration random access mode.
일반적으로 움직임 벡터는 한 카메라에서 촬영된 영상 속에서의 객체의 움직임 정보를 나타내고, 변이 벡터는 서로 다른 카메라에서 촬영된 영상 간 객체의 위치 차이를 나타낸다. 기존의 H.264/AVC에서는 단일 시점 영상을 위한 비디오 부호화 기술이기 때문에 변이 벡터를 고려하지 않는다. 하지만, 다시점 비디오 부호화 기술은 H.264/AVC를 기반으로 하여 시점 간 예측구조를 지원하기 때문에, 다른 시점에서의 영상을 참조할 때는 움직임 벡터 대신 변이 벡터가 고려된다. 따라서, 본 논문에서는 다시점 비디오 부호화 기술을 위해 전역 변이 벡터 대체 방법과 확장된 주변 블록 예측 방법을 이용하여 개선된 움직임/변이 벡터 예측 방법을 제안한다. 제안하는 방법을 통해서 움직임 벡터 탐색 범위를 ${\pm}16$으로 설정하고, 전역 변이 벡터 탐색 범위를 ${\pm}32$으로 설정한 경우 평균 1.07%의 BD (Bjontegaard delta)-비트율 감소를 얻었으며, 전역 변이 벡터 탐색 범위를 ${\pm}64$로 설정한 경우 평균 1.32%의 BD-비트율 감소를 얻을 수가 있었다.
In this paper, a prediction system is proposed to control the brightness of smart street lamps by predicting the moving path through the reduction of consumption power and information of pedestrian's past moving direction while meeting the function of existing smart street lamps. The brightness of smart street lamps is adjusted by utilizing the walk tracking vector and soft hand-off characteristics obtained through the motion sensing sensor of smart street lamps. In addition, the motion vector is used to analyze and predict the pedestrian path, and the GPU is used for high-speed computation. Pedestrians were detected using adaptive Gaussian mixing, weighted difference imaging, and motion vectors, and motions of pedestrians were analyzed using the extracted motion vectors. The preprocessing process using linear interpolation is performed to improve the performance of the proposed prediction system. Fuzzy prediction system and neural network prediction system are designed in parallel to improve efficiency and rough set is used for error correction.
IEIE Transactions on Smart Processing and Computing
/
제4권1호
/
pp.16-21
/
2015
Most video services are transmitted in wireless networks. In a network environment, a packet of video is likely to be lost during transmission. For this reason, numerous error concealment (EC) algorithms have been proposed to combat channel errors. On the other hand, most existing algorithms cannot conceal the whole missing frame effectively. To resolve this problem, this paper proposes a new Adaptive Prediction Unit-based Motion Vector Extrapolation (APMVE) algorithm to restore the entire missing frame encoded by High Efficiency Video Coding (HEVC). In each missing HEVC frame, it uses the prediction unit (PU) information of the previous frame to adaptively decide the size of a basic unit for error concealment and to provide a more accurate estimation for the motion vector in that basic unit than can be achieved by any other conventional method. The simulation results showed that it is highly effective and significantly outperforms other existing frame recovery methods in terms of both objective and subjective quality.
Efficient multi-view coding techniques are needed to reduce the complexity of multi-view video which increases in proportion to the number of cameras. To reduce the complexity and maintain image quality and bit-rates, an motion estimation method and temporal prediction structure are proposed in this paper. The proposed motion estimation method exploits the characteristic of motion vector distribution and the motion direction and motion size of the block to place search points and decide the search patten adaptively. And the proposed prediction structure divides every GOP to decide the maximum index of hierarchical B layer and the number of pictures of each B layer. Experiment results show that the complexity reduction of the proposed temporal prediction structure and motion estimation method over hierarchical B pictures prediction structure and TZ search method which are used in JMVC(Joint Multi-view Video Coding) reference model can be up to 45∼70% while maintaining similar video quality and bit rates.
H.264/AVC의 B 슬라이스의 부호화 효율 향상과 두 개의 움직임벡터를 탐색하는데 소요되는 계산량 감소를 위하여 양방향 대칭(Bi-directional Symmetric) 기법이 개발된 바 있다. 이 기법은, 전방향과 역방향 참조영상 각각에 대하여 움직임 벡터를 구하고 이 두 개를 각각 다 전송하는 종래의 양방향 예측기법과는 달리, 전방향 참조영상에 대해 움직임 벡터를 찾는 동시에 역방향 참조영상에 대한 역방향 움직임 벡터를 전방향 참조영상, 역방향 참조영상, 그리고 현재 영상간의 상대적 거리를 고려한 대칭(Symmetric) 구조로 동시에 계산하여 추정하는 방법이다. 이 기법에 따르면, 전방향 움직임 벡터가 정해지면, 역방향 움직임벡터는 이와 대칭적으로 계산하여 얻어지므로 움직임벡터 추정 복잡도를 반으로 줄이고, 전방향 움직임벡터만을 전송하도록 하여 부호화할 움직임벡터의 양도 줄일 수 있다. 그러나 이 방법은 항상 전방향 움직임 벡터를 기준으로 역방향 움직임 벡터를 계산하여 얻다 보니, 장면전환등의 경우 오히려 역방향 움직임벡터를 기준으로 전방향 움직임벡터를 추산하는 것이 더욱 효율적인 경우도 있다. 본 논문에서는 전방향 참조영상에 대한 움직임 벡터를 중심으로 역방향 움직임 예측벡터를 추정하는 방법을 일반화시켜, 역방향 움직임 벡터를 중심으로 전방향 움직임 벡터를 추산하여 사용하는 방법을 제안하고 아울러 기존 방법과 제안 방법을 율왜곡 관점에서 최적으로 선택하여 사용하는 방법을 제안한다.
In this paper, a new pixel decimation algorithm for the estimation of motion vector is proposed. In traditional methods, the computational cost can be reduced since only part of the pixels are used for motion vector calculation. But these methods limits the accuracy ofmotion vector because of the same reason. We derive a selection criteria of subsampled pixels that can reduce the probablity of false motion vector detection based on stochastic point of view. By using this criteria, a new pixel decimation algorithm that can reduce the prediction error with similar computational cost is presented. The simulation results applied to standard images haveshown that the proposed algorithm has less mean absolute prediction error than conventional pixel decimation algorithm.
In this paper, we propose predictive motion estimatin algorithm which can predict motion without additional side information considering spatio-tempral correlatio of motion vector. This method performs motion prediction of current block using correlation of the motion vector for two spatially adjacent blocks and a temporally adjacent block. Form predicted motion, the position of searhc area is determined. Then in this searhc area, we estimate motion vector of current block using block matching algoirthm. Considering spatial an temporal correlation of motion vector, the proposed method can predict motion precisely much more. Especially when the motion of objects is rapid, this method can estimate motion more precisely without reducing block size or increasing search area. Futhrmore, the proposed method has computation time the same as conventional block matching algorithm. And as it predicts motion from adjacent blocks, it does not require additional side information for adjacent block. Computer simulation results show that motion estimation of proposed method is more precise than that of conventioanl method.
본 논문에서는 동영상 부호화 기의 성능을 개선하기 위한 최소 자송 기반 적응 움직임 벡터 예측 알고리즘을 제안 하고자 한다. 적응 움직임 벡터 예측 방식은 동영상 움직임 벡터의 국부 통계적인 특성의 돌연한 변화로 특정지어 진다는 것을 바탕으로 최소 자승(Least Squared) 기반의 선형 움직임의 계수들을 통계적 특성에 따라 최적화하는 방식이지만 상기 방식은 애우 높은 계산 량을 요구하는 단정을 지니고 있다. 본 논문에서는 공간적인 움직임 변화 방향성을 가지는 최소 자승 최적화를 기반으로 움직임 예측기의 계수를 적응적으로 조절하여 움직임 예측 오류뿐만 아니라 계산 량도 감소시키는 방식에 대해 기술한다. 실험을 통해 제안된 방식의 성능을 확인할 수 있었다.
본 논문에서는 고성능 HEVC 부호기를 위한 적응적 탐색영역 할당과 제안하는 알고리즘에 적합한 하드웨어 구조를 제안한다. 기존 움직임 벡터는 예측 성능을 향상하기 위하여 주변 블록의 움직임 벡터들을 예측 벡터 후보로 구성하고 현재 움직임 벡터와 최소의 차이를 가지는 하나의 움직임 벡터를 이용하여 일정한 크기의 탐색영역을 할당한다. 제안하는 알고리즘은 주변 네 개의 블록에 대한 움직임 벡터들의 구조에 따라 탐색영역의 크기를 직사각형과 옥타곤 형태로 할당함으로써 탐색영역의 크기를 축소하여 연산시간을 감소시켰다. 또한, 네 개의 움직임 벡터들을 모두 사용함에 따라 더 정확한 예측이 가능하며, 하드웨어에 적합한 형태로 구현함으로써 하드웨어 면적 및 연산시간을 효과적으로 감소시켰다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.