• 제목/요약/키워드: Motion time

검색결과 5,265건 처리시간 0.031초

Target Motion Analysis with the IMMPDAF for Sonar Resource Management (IMMPDAF를 Sonar Resource Management에 적용한 기동표적분석 연구)

  • 임영택;송택렬
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • 제53권5호
    • /
    • pp.331-337
    • /
    • 2004
  • Target motion analysis with a sonar system in general uses a regular sampling time and thus obtains regular target information regardless of the target maneuver status. This often results in overconsumption of the limited sonar resources. We propose two methods of the IMM(interacting Multiple Model) PDAF algorithm for sonar resource management to improve target motion analysis performance and to save sonar resources in this paper. In the first method, two different process noise covariance which are used as mode sets are combined based on probability. In the second method, resource time which are processed from two mode sets is calculated based on probability and then considered as update time at next step. Performance of the proposed algorithms are compared with the other algorithms by a series of Monte Carlo simulation.

Vibration Analysis of an Automatic Ball Balancer (자동 볼 평형장치의 진동 해석)

  • 박준민;노대성;정진태
    • Journal of KSNVE
    • /
    • 제9권2호
    • /
    • pp.363-370
    • /
    • 1999
  • In this study, we establish a theory for dynamic behaviors of an automatic ball balancer, analyze its dynamic characteristics, and provide its design guide line. Equations of motion are derived by using the polar coordinate system instead of the rectangular coordinate system which was previously used in other researches. After nondimensionalization of the equations, the perturbation method is applied to locate the equilibrium positions and to obtain the linearized equations of motion around the equilibrium positions. The Eigenvalue problem is used to verify the dynamic stability around the equilibrium positions. On the other hand, the time responses are computed from the nonlinear equations of motion by using a time integration method.

  • PDF

Vision-Based Real-Time Motion Capture System

  • Kim, Tae-Ho;Jo, Kang-Hyun;Yoon, Yeo-Hong;Kang, Hyun-Duk;Kim, Dae-Nyeon;Kim, Se-Yoon;Lee, In-Ho;Park, Chang-Jun;Leem Nan-Hee;Kim, Sung-Een
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2001년도 ICCAS
    • /
    • pp.171.5-171
    • /
    • 2001
  • Information that is acquired by adhered sensors on a body has been commonly used for the three-dimensional real-time motion capture algorithm. This paper describes realtime motion capture algorithm using computer vision. In a real-time image sequence, human body silhouette is extracted use a background subtraction between background image and the reference image. Then a human standing posture whether forward or backward is estimated by extraction of skin region in the silhoutte. After then, the principal axis is calculated in the torso and the face region is estimated on the principal axis. Feature points, which are essential condition to track the human gesture, are obtained ...

  • PDF

A time recursive approach for do-interlacing using improved ELA and motion compensation based on hi-directional BMA (개선된 ELA와 양방향 BMA기반의 움직임 보상을 이용한 재귀적 디인터레이싱)

  • 변승찬;변정문;김경환
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • 제41권5호
    • /
    • pp.87-97
    • /
    • 2004
  • In this paper, we propose an algorithm for interlaced-to-progressive conversion by the weighted summation of the information collected from spatial do-interlacing method, in which the weighted edge based line average is applied, and the temporal method in which the motion compensation is employed by using hi-directional BMA (block matching algorithm). We employed time-recursive and motion adaptive processing as motion detection is involved. Also, a median filter is used to deal with limitation of the linear summation in which only an intermediate of values being involved is determined. The main goal of the approach is to overcome the shortcomings of each of the do-interlacing techniques without significant increment of the computational complexity, and the proposed method is apt to implement in hardware for real-time processing.

Comparison of an ultrasonic distance sensing system and a wire draw distance encoder in motion monitoring of coupled structures

  • Kuanga, K.S.C.;Hou, Xiaoyan
    • Coupled systems mechanics
    • /
    • 제5권2호
    • /
    • pp.191-201
    • /
    • 2016
  • Coupled structures are widely seen in civil and mechanical engineering. In coupled structures, monitoring the translational motion of its key components is of great importance. For instance, some coupled arms are equipped with a hydraulic piston to provide the stiffness along the piston axial direction. The piston moves back and forth and a distance sensing system is necessary to make sure that the piston is within its stroke limit. The measured motion data also give us insight into how the coupled structure works and provides information for the design optimization. This paper develops two distance sensing systems for coupled structures. The first system measures distance with ultrasonic sensor. It consists of an ultrasonic sensing module, an Arduino interface board and a control computer. The system is then further upgraded to a three-sensor version, which can measure three different sets of distance data at the same time. The three modules are synchronized by the Arduino interface board as well as the self-developed software. Each ultrasonic sensor transmits high frequency ultrasonic waves from its transmitting unit and evaluates the echo received back by the receiving unit. From the measured time interval between sending the signal and receiving the echo, the distance to an object is determined. The second distance sensing system consists of a wire draw encoder, a data collection board and the control computer. Wire draw encoder is an electromechanical device to monitor linear motion by converting a central shaft rotation into electronic pulses of the encoder. Encoder can measure displacement, velocity and acceleration simultaneously and send the measured data to the control computer via the data acquisition board. From experimental results, it is concluded that both the ultrasonic and the wire draw encoder systems can obtain the linear motion of structures in real-time.

Parametric Imaging with Respiratory Motion Correction for Contrast-Enhanced Ultrasonography (조영증강 초음파 진단에서 호흡에 의한 흔들림을 보정한 파라미터 영상 생성 기법)

  • Kim, Ho-Joon;Cho, Yun-Seok
    • KIPS Transactions on Software and Data Engineering
    • /
    • 제9권2호
    • /
    • pp.69-76
    • /
    • 2020
  • In this paper, we introduce a method to visualize the contrast diffusion patterns and the dynamic vascular patterns in a contrast-enhanced ultrasound image sequence. We present an imaging technique to visualize parameters such as contrast arrival time, peak intensity time, and contrast decay time in contrast-enhanced ultrasound data. The contrast flow pattern and its velocity are important for characterizing focal liver lesions. We propose a method for representing the contrast diffusion patterns as an image. In the methods, respiratory motion may degrade the accuracy of the parametric images. Therefore, we present a respiratory motion tracking technique that uses dynamic weights and a momentum factor with respect to the respiration cycle. Through the experiment using 72 CEUS data sets, we show that the proposed method makes it possible to overcome the limitation of analysis by the naked eye and improves the reliability of the parametric images by compensating for respiratory motion in contrast-enhanced ultrasonography.

Generation of Synthetic Ground Motion in Time Domain (시간영역 인공지진파 생성)

  • Kim, Hyun-Kwan;Park, Du-Hee;Jeong, Chang-Gyun
    • Land and Housing Review
    • /
    • 제1권1호
    • /
    • pp.51-57
    • /
    • 2010
  • The importance of seismic design is greatly emphasized recently in Korea, resulting in an increase in the number of dynamic analysis being performed. One of the most important input parameters for the dynamic seismic analysis is input ground motion. However, it is common practice to use recorded motions from U.S. or Japan without considering the seismic environment of Korea or synthetic motions generated in the frequency domain. The recorded motions are not suitable for the seismic environment of Korea since the variation in the duration and energy with the earthquake magnitude cannot be considered. The artificial motions generated in frequency domain used to generated design response spectrum compatible ground motion has the problem of generating motions that have different frequency characteristics compared to real recordings. In this study, an algorithm that generates target response spectrum compatible ground motions in time domain is used to generate a suite of input ground motions. The generated motions are shown to preserve the non-stationary characteristics of the real ground motion and at the same, almost perfectly match the design response spectrum.

Development of wearable Range of Motion measurement device capable of dynamic measurement

  • Song, Seo Won;Lee, Minho;Kang, Min Soo
    • International journal of advanced smart convergence
    • /
    • 제8권4호
    • /
    • pp.154-160
    • /
    • 2019
  • In this paper, we propose the miniaturization size of wearable Range of Motion(ROM) and a system that can be connected with smart devices in real-time to measure the joint movement range dynamically. Currently, the ROM of the joint is directly measured by a person using a goniometer. Conventional methods are different depending on the measurement method and location of the measurement person, which makes it difficult to measure consistently and may cause errors. Also, it is impossible to measure the ROM of joints in real-life situations. Therefore, the wearable sensor is attached to the joint to be measured to develop a miniaturize size ROM device that can measure the range of motion of the joint in real-time. The sensor measured the resistance value changed according to the movement of the joint using a load cell. Also, the sensed analog values were converted to digital values using an Analog to Digital Converter(ADC). The converted amount can be transmitted wireless to the smart device through the wearable sensor node. As a result, the developed device can be measured more consistently than the measurement using the goniometer, communication with IoT-based smart devices, and wearable enables dynamic observation. The developed wearable sensor node will be able to monitor the dynamic state of rehabilitation patients in real-time and improve the rapid change of treatment method and customized treatment.

Impact of time and frequency domain ground motion modification on the response of a SDOF system

  • Carlson, Clinton P.;Zekkos, Dimitrios;McCormick, Jason P.
    • Earthquakes and Structures
    • /
    • 제7권6호
    • /
    • pp.1283-1301
    • /
    • 2014
  • Ground motion modification is extensively used in seismic design of civil infrastructure, especially where few or no recorded ground motions representative of the design scenario are available. A site in Los Angeles, California is used as a study site and 28 ground motions consistent with the design earthquake scenario are selected. The suite of 28 ground motions is scaled and modified in the time domain (TD) and frequency domain (FD) before being used as input to a bilinear SDOF system. The median structural responses to the suites of scaled, TD-modified, and FD-modified motions, along with ratios of he modified-to-scaled responses, are investigated for SDOF systems with different periods, strength ratios, and post-yield stiffness ratios. Overall, little difference (less than 20%) is observed in the peak structural accelerations, velocities, and displacements; displacement ductility; and absolute accelerations caused by the TD-modified and FD-modified motions when compared to the responses caused by the scaled motions. The energy absorbed by the system when the modified motions are used as input is more than 20% greater than when scaled motions are used as input. The observed trends in the structural response are predominantly the result of changes in the ground motion characteristics caused by modification.

Implementation of Video Surveillance System with Motion Detection based on Network Camera Facilities (움직임 감지를 이용한 네트워크 카메라 기반 영상보안 시스템 구현)

  • Lee, Kyu-Woong
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • 제14권1호
    • /
    • pp.169-177
    • /
    • 2014
  • It is essential to support the image and video analysis technology such as motion detection since the DVR and NVR storage were adopted in the real time visual surveillance system. Especially the network camera would be popular as a video input device. The traditional CCTV that supports analog video data get be replaced by the network camera. In this paper, we present the design and implementation of video surveillance system that provides the real time motion detection by the video storage server. The mobile application also has been implemented in order to provides the retrieval functionality of image analysis results. We develop the video analysis server with open source library OpenCV and implement the daemon process for video input processing and real-time image analysis in our video surveillance system.