• Title/Summary/Keyword: Motion platform

Search Result 568, Processing Time 0.026 seconds

Effect of Rehabilitation Exercise for Golfers on the X-factor and Ground Reaction Force according to Phase of the Golf Swing

  • yoon, Junggyu;Cho, Byungyun
    • Journal of International Academy of Physical Therapy Research
    • /
    • v.10 no.1
    • /
    • pp.1706-1710
    • /
    • 2019
  • Background: Despite frequent shoulder injuries of rotator cuff muscle of golfers by the result of overuse and poor swing mechanics, there is little research on shoulder specific rehabilitation exercises for injured rotator cuff muscle and golf swing Objective: To examined the effect of rehabilitation exercise for golfers on the X factor and ground reaction force (GRF) according to phase of the golf swing. Design: Crossover study Methods: The participants were 13 amateur golfers selected for a 4 week rehabilitation exercise for golfers. A rehabilitation exercise for golfers consisting of 5 steps and 4 items (sleeper stretch, full side plank, push up to plank, high plank knee unders) were applied to all participants. A three dimensional motion analyzer and force platform (SMART-E, BTS, Italy) were used to measure the X factor (angle between shoulder and pelvis at top of back swing) and GRF according to phase of the golf swing. All dependent variables were measured before and after exercise. The collected data was analyzed using the paired t test and SPSS 21.0. Results: The GRF had a statistically significant increase in the impact phase and ratio impact/weight after rehabilitation exercise for golfers (p<.05). The X-factor, GRF in top of back swing and finish were no significant differences between before and after exercise (p>.05). Conclusions: These results suggested that rehabilitation exercise for golfers was effective for increasing GRF in the impact phase and ratio impact/weight for amateur golfer.

Design of a MEMS sensor array for dam subsidence monitoring based on dual-sensor cooperative measurements

  • Tao, Tao;Yang, Jianfeng;Wei, Wei;Wozniak, Marcin;Scherer, Rafal;Damasevicius, Robertas
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.15 no.10
    • /
    • pp.3554-3570
    • /
    • 2021
  • With the rapid development of the Chinese water project, the safety monitoring of dams is urgently needed. Many drawbacks exist in dams, such as high monitoring costs, a limited equipment service life, long-term monitoring difficulties. MEMS sensors have the advantages of low cost, high precision, easy installation, and simplicity, so they have broad application prospects in engineering measurements. This paper designs intelligent monitoring based on the collaborative measurement of dual MEMS sensors. The system first determines the endpoint coordinates of the sensor array by the coordinate transformation relationship in the monitoring system and then obtains the dam settlement according to the endpoint coordinates. Next, this paper proposes a dual-MEMS sensor collaborative measurement algorithm that builds a mathematical model of the dual-sensor measurement. The monitoring system realizes mutual compensation between sensor measurement data by calculating the motion constraint matrix between the two sensors. Compared with the single-sensor measurement, the dual-sensor measurement algorithm is more accurate and can improve the reliability of long-term monitoring data. Finally, the experimental results show that the dam subsidence monitoring system proposed in this paper fully meets the engineering monitoring accuracy needs, and the dual-sensor collaborative measurement system is more stable than the single-sensor monitoring system.

Coupled dynamic responses of a semisubmersible under the irregular wave and turbulent wind

  • Dey, Swarnadip;Saha, Kaushik;Acharya, Pooja;Roy, Shovan;Banik, Atul K.
    • Ocean Systems Engineering
    • /
    • v.8 no.4
    • /
    • pp.441-459
    • /
    • 2018
  • A coupled dynamic analysis of a semisubmersible-type FOWT has been carried out in time domain under the combined action of irregular wave and turbulent wind represented respectively by JONSWAP spectrum and Kaimal spectrum. To account for the turbine-floater motion coupling in a more realistic way, the wind turbulence has been incorporated into the calculation of aerodynamic loads. The platform model was referred from the DeepCwind project and the turbine considered here was the NREL 5MW Baseline. To account for the operationality of the turbine, two different environmental conditions (operational and survival) have been considered and the aerodynamic effect of turbine-rotation on actual responses of the FOWT has been studied. Higher mean offsets in surge and pitch responses were obtained under the operational condition as compared to the survival condition. The mooring line tensions were also observed to be sensitive to the rotation of turbine due to the turbulence of wind and overestimated responses were found when the constant wind was considered in the analysis. Additionally, a special analysis case of sudden shutdown of the turbine has also been considered to study the swift modification of responses and tension in the mooring cables.

Implementation of Educational UAV with Automatic Navigation Flight

  • Park, Myeong-Chul;Hur, Hwa-ra
    • Journal of the Korea Society of Computer and Information
    • /
    • v.24 no.8
    • /
    • pp.29-35
    • /
    • 2019
  • This paper proposes a UAV equipped with an automatic control system for educational purposes such as navigation flight or autonomous flight. The proposed UAV is capable of automatic navigation flight and it is possible to control more precisely and delicately than existing UAV which is directly controlled. And it has the advantage that it is possible to fly in a place out of sight. In addition, the user may arbitrarily change the route or route information to use it as an educational purpose for achieving the special purpose. It also allows you to check flight status by shooting a video during flight. For this purpose, it is designed to check the image in real time using 5.8GHz video transmitter and receiver. The flight information is recorded separately and used as data to judge the normal flight after the flight. The result of the paper can be flighted along the coordinates specified using GPS information. Since it can receive real-time video, it is expected to be used for various education purposes such as reconnaissance of polluted area, achievement of special purpose, and so on.

Analysis of Components Performance for Programmable Video Decoder (프로그래머블 비디오 복호화기를 위한 구성요소의 성능 분석)

  • Kim, Jaehyun;Park, Gooman
    • Journal of Broadcast Engineering
    • /
    • v.24 no.1
    • /
    • pp.182-185
    • /
    • 2019
  • This paper analyzes performances of modules in implementing a programmable multi-format video decoder. The goal of the proposed platform is the high-end Full High Definition (FHD) video decoder. The proposed multi-format video decoder consists of a reconfigurable processor, dedicated bit-stream co-processor, memory controller, cache for motion compensation, and flexible hardware accelerators. The experiments suggest performance baseline of modules for the proposed architecture operating at 300 MHz clock with capability of decoding HEVC bit-streams of FHD 30 frames per second.

Important measure analysis of uncertainty parameters in bridge probabilistic seismic demands

  • Song, Shuai;Wu, Yuan H.;Wang, Shuai;Lei, Hong G.
    • Earthquakes and Structures
    • /
    • v.22 no.2
    • /
    • pp.157-168
    • /
    • 2022
  • A moment-independent importance measure analysis approach was introduced to quantify the effects of structural uncertainty parameters on probabilistic seismic demands of simply supported girder bridges. Based on the probability distributions of main uncertainty parameters in bridges, conditional and unconditional bridge samples were constructed with Monte-Carlo sampling and analyzed in the OpenSees platform with a series of real seismic ground motion records. Conditional and unconditional probability density functions were developed using kernel density estimation with the results of nonlinear time history analysis of the bridge samples. Moment-independent importance measures of these uncertainty parameters were derived by numerical integrations with the conditional and unconditional probability density functions, and the uncertainty parameters were ranked in descending order of their importance. Different from Tornado diagram approach, the impacts of uncertainty parameters on the whole probability distributions of bridge seismic demands and the interactions of uncertainty parameters were considered simultaneously in the importance measure analysis approach. Results show that the interaction of uncertainty parameters had significant impacts on the seismic demand of components, and in some cases, it changed the most significant parameters for piers, bearings and abutments.

A Web-GIS Based Monitoring Module for Illegal Dumping in Smart Cities

  • Han, Taek-Jin
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.25 no.6_1
    • /
    • pp.927-939
    • /
    • 2022
  • This study was conducted to develop a Web-GIS based monitoring module of smart city that can effectively respond, manage and improve situation in all stages of illegal dumping management on a city scale. First, five technologies were set for the core technical elements of the module configuration. Five core technical elements are as follows; video screening technology based on motion vector analysis, human behavior detection based on intelligent video analytics technology, mobile app for receiving civil complaints about illegal dumping, illegal dumping risk model and street cleanliness map, Web-GIS based situation monitoring technology. The development contents and results for each set of core technical elements were evaluated. Finally, a Web-GIS based 'illegal dumping monitoring module' was proposed. It is possible to collect and analyze city data at the local government level through operating the proposed module. Based on this, it is able to effectively detect illegal dumpers at relatively low cost and identify the tendency of illegal dumping by systematically managing habitual occurrence areas. In the future, it is expected to be developed in the form of an add-on module of the smart city integration platform operated by local governments to ensure interoperability and scalability.

Development of ROS2-on-Yocto-based Thin Client Robot for Cloud Robotics (클라우드 연동을 위한 ROS2 on Yocto 기반의 Thin Client 로봇 개발)

  • Kim, Yunsung;Lee, Dongoen;Jeong, Seonghoon;Moon, Hyeongil;Yu, Changseung;Lee, Kangyoung;Choi, Juneyoul;Kim, Youngjae
    • The Journal of Korea Robotics Society
    • /
    • v.16 no.4
    • /
    • pp.327-335
    • /
    • 2021
  • In this paper, we propose an embedded robot system based on "ROS2 on Yocto" that can support various robots. We developed a lightweight OS based on the Yocto Project as a next-generation robot platform targeting cloud robotics. Yocto Project was adopted for portability and scalability in both software and hardware, and ROS2 was adopted and optimized considering a low specification embedded hardware system. We developed SLAM, navigation, path planning, and motion for the proposed robot system validation. For verification of software packages, we applied it to home cleaning robot and indoor delivery robot that were already commercialized by LG Electronics and verified they can do autonomous driving, obstacle recognition, and avoidance driving. Memory usage and network I/O have been improved by applying the binary launch method based on shell and mmap application as opposed to the conventional Python method. Finally, we verified the possibility of mass production and commercialization of the proposed system through performance evaluation from CPU and memory perspective.

Automated Phase Identification in Shingle Installation Operation Using Machine Learning

  • Dutta, Amrita;Breloff, Scott P.;Dai, Fei;Sinsel, Erik W.;Warren, Christopher M.;Wu, John Z.
    • International conference on construction engineering and project management
    • /
    • 2022.06a
    • /
    • pp.728-735
    • /
    • 2022
  • Roofers get exposed to increased risk of knee musculoskeletal disorders (MSDs) at different phases of a sloped shingle installation task. As different phases are associated with different risk levels, this study explored the application of machine learning for automated classification of seven phases in a shingle installation task using knee kinematics and roof slope information. An optical motion capture system was used to collect knee kinematics data from nine subjects who mimicked shingle installation on a slope-adjustable wooden platform. Four features were used in building a phase classification model. They were three knee joint rotation angles (i.e., flexion, abduction-adduction, and internal-external rotation) of the subjects, and the roof slope at which they operated. Three ensemble machine learning algorithms (i.e., random forests, decision trees, and k-nearest neighbors) were used for training and prediction. The simulations indicate that the k-nearest neighbor classifier provided the best performance, with an overall accuracy of 92.62%, demonstrating the considerable potential of machine learning methods in detecting shingle installation phases from workers knee joint rotation and roof slope information. This knowledge, with further investigation, may facilitate knee MSD risk identification among roofers and intervention development.

  • PDF

CFD procedure of Multi-phase flow to predict the trend of Boil-off for the various filling ratio of C-Type liquefied hydrogen tank subject to sloshing motion (슬로싱에 놓인 C-Type 액화수소 탱크의 적재율에 따른 BOG 발생량 경향 예측을 위한 다상 유동 CFD 해석 절차)

  • Jin-Ho Lee;Sung-Je Lee;Se-Yun Hwang;Jang Hyun Lee
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2022.06a
    • /
    • pp.213-213
    • /
    • 2022
  • 본 논문은 슬로싱(Sloshing) 거동에 놓인 극저온 액체수소 화물창의 BOG 예측을 위한 CFD 해석 절차를 다루고 있다. 특히, 적재율(Filling Ratio)에 따라 달라지는 열 유입과 그에 따른 액체수소의 기화 경향을 파악하기 위한 목적으로 수행되었다. 액체수소와 기체수소의 혼재에 의한 다상 열유동(Multiphase-Thermal flow) 특성을 반영하고 유동에 따른 강제 대류 현상을 열유속에 반영하기 위한 CFD 해석을 수행하였다. 다상 유동 모델의 정확성을 검증하기 위하여 슬로싱 실험의 압력 계측 값과 해석의 압력 값 및 자유수면(Free surface) 형상을 비교하였다. 소형 C-Type 독립형 액화수소 탱크를 대상으로 슬로싱 유동과 BOG 발생을 수치적으로 예측하였다. 해석 과정에서 VOF(Volume of fraction) 모델과 Eulerian 모델을 모두 적용하여, 액체수소에 유입되는 열 유속(Heat flux)의 예측 정확성을 비교하였다. 슬로싱 유무에 따라 액체수소에 유입되는 열 유속을 비교하여 슬로싱 유동의 포함 여부에 따른 BOG 발생량의 변화를 제시하였으며, 최종적으로 액체수소의 충전율(Filling ratio) 별로 BOG 발생량의 경향성을 제시하였다.

  • PDF