• Title/Summary/Keyword: Motion mimic

Search Result 41, Processing Time 0.041 seconds

Real-time Marker-free Motion Capture System to Create an Agent in the Virtual Space (가상 공간에서 에이전트 생성을 위한 실시간 마커프리 모션캡쳐 시스템)

  • 김성은;이란희;박창준;이인호
    • Proceedings of the IEEK Conference
    • /
    • 2002.06c
    • /
    • pp.199-202
    • /
    • 2002
  • We described a real-time 3D computer vision system called MIMIC(Motion interface f Motion information Capture system) that can capture and save motion of an actor. This system analyzes input images from vision sensors and searches feature information like a head, hands, and feet. Moreover, this estimates intermediated joints as an elbow and hee using feature information and makes 3D human model having 20 joints. This virtual human model mimics the motion of an actor in real-time. Therefore this system can realize the movement of an actor unaffectedly because of making intermediated joint for complete human body contrary to other marker-free motion capture system.

  • PDF

A Study on Characteristics of Inter-Articular Coordination of Human Fingers for Robotic Hands (로봇 손을 위한 인간 손가락의 관절간 운동특성 고찰)

  • Kim Byoung-Ho
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.23 no.7 s.184
    • /
    • pp.67-75
    • /
    • 2006
  • One of challenging topics for humanoid hands is to modulate a human-like motion of humanoid fingers handling an object. To this end, recognizing the motion behavior of human fingers is very important aspect. Based on this concept, this paper identifies the .joint trajectories of human fingers for an operation of hand opening and closing, and specifies an empirical model that coordinates an inter-articular relationship of human fingers doing the given motion. It is expected that the inter-articular model presented in this paper is applicable for humanoid fingers to mimic the natural motion of human fingers.

Bio Nature Mimic - Simultaneous Measurements of a Seagull Model's Motion and its Flow Fields (생체자연모사 - 갈매기 운동과 유동 동시측정 해석)

  • Doh, Deog-Hee;Baek, Tae-Sil;Cho, Kyeong-Rae;Pyeon, Yong-Beom;Cho, Yong-Beom
    • 한국가시화정보학회:학술대회논문집
    • /
    • 2006.12a
    • /
    • pp.117-120
    • /
    • 2006
  • Inspiring or mimicking biological bodies is regarded as one of a breakthrough in the conventional engineering. The bird's motion is one of the mimicking objects. Seagulls fly under strong storm at sea. An attempt of investigating into the characteristics of a seagull model's motion and its flow fields has been made in this study. Three cameras, two for motion capture and one for flow field, were used. The motions of the seagull's wing have been reconstructed, and the flow characteristics around the wing have been investigated with 2D-PIV measurements.

  • PDF

Development of Anthropomorphic Robotic Joint (인간형 로봇관절의 개발)

  • Ryu, Seong-Mu;Baek, Sang-Hun;Choe, Hyeok-Ryeol
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.25 no.1
    • /
    • pp.89-97
    • /
    • 2001
  • In this paper, we present a new two-dof anthropomorphic joint mechanism that enables to mimic the humanlike motion. The proposed mechanism, called Double Active Universal Joint(DAUJ), generates a two-dof swivel motion without rolling by the coupled motion of two independent motor. In addition, we perform basic experiments to confirm the effectiveness of the proposed mechanism and the results are reported.

Human motion recognition and application using Kinect sensor (Kinect 센서를 사용한 인체동작인식 및 활용)

  • Jeong, Jong-Hun;Han, Man-Su
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2013.10a
    • /
    • pp.625-626
    • /
    • 2013
  • This paper introduces a new method that detects human motions using a Kinect sensor. Also this paper describes a method to mimic the detected human motions. We first build a human stick model by processing the output of Kinect sensor. We detect a specific motion by using the position of each joint of the human stick model and by using the angles between joints.

  • PDF

Pitch Directional Swimming Control of Multi-Legged Biomimetic Underwater Robot (CALEB10) (다족형 생체모방 수중 로봇(CALEB10)의 Pitch 유영 제어)

  • Lee, Hansol;Lee, Jihong
    • The Journal of Korea Robotics Society
    • /
    • v.12 no.2
    • /
    • pp.228-238
    • /
    • 2017
  • The CALEB10 is a multi-legged biomimetic underwater robot. In the last research, we developed a swimming pattern named ESPG (Extended Swimming Pattern Generator) by observing diving beetle's swimming actions and experimented with a positive buoyancy state in which CALEB10 floats on the water. In this paper, however, we have experimented with CALEB10 in a neutral buoyancy state where it is completely immersed in water for pitch motion control experiment. And we found that CALEB10 was unstably swimming in the pitch direction in the neutral buoyancy state and analyzed that the reason was due to the weight proportion of the legs. In this paper, we propose a pitch motion control method to mimic the pitch motion of diving beetles and to solve the problem of CALEB10 unstably swimming in the pitch direction. To control the pitch motion, we use the method of controlling additional joints while swimming with the ESPG. The method of obtaining propulsive force by the motion of the leg has a problem of giving propulsive force in the reverse direction when swimming in the surge direction, but this new control method has an advantage that a propulsive moment generated by a swimming action only on a target pitch value. To demonstrate validity this new control method, we designed a dynamics-based simulator environment. And the control performance to the target pitch value was verified through simulation and underwater experiments.

ON THE TRIANGULAR EQUILIBRIUM POINTS IN THE ELLIPTIC RESTRICTED THREE-BODY PROBLEM UNDER RADIATION AND OBLATENESS EFFECTS

  • DERMAWAN, B.;HUDA, I.N.;WIBOWO, R.W.;HIDAYAT, T.;UTAMA, J.A.;MANDEY, D.;TAMPUBOLON, I.
    • Publications of The Korean Astronomical Society
    • /
    • v.30 no.2
    • /
    • pp.293-294
    • /
    • 2015
  • This work considers the elliptic restricted three-body problem under effects of radiation of the bigger primary, and an oblate spheroid for the smaller primary to mimic an exoplanetary system with a gas giant planet. Under the influences of both effects we look for the existence of the triangular equilibrium points and the influences of the radiation and oblateness on the locations and motion of the points. We set the system in a normalized rotating coordinate system and derive equations of motion for the third infinitesimal object. Our study shows that the effects modify the equilateral/isosceles triangle shape with respect to the primaries. The triangular points also have non-planar motion with period depending on the value of the planet oblateness.

MDOF Ionic-Polymer-Metal-Composite Actuators with Selectively Grown Multiple Electrodes (선택적으로 성장 시킨 다중 전극판을 갖는 다자유 IPMC 작동기)

  • Jeon, Jin-Han;Oh, Il-Kwon
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2008.04a
    • /
    • pp.294-298
    • /
    • 2008
  • The ionic polymer-metal composite actuators with selectively grown multiple electrodes were developed to mimic the swimming locomotion of a fish. The developed method is based on combining electroplating with the electroless chemical reduction using the patterned mask. The advantages of this fabrication method are that the initial compositing between the polymer and platinum particles can be assured by the chemical reduction method, and the thickness of each electrode can be controlled easily and rapidly by electroplating. By using the fabricated actuator with a multiple degree of freedom, the oscillatory wave of the flexible membrane actuator was generated and a twisting motion was also realized to verify the possibility of mimicking the fish-like locomotion. The frequency response function was analyzed to investigate the natural frequency and the damping factor by a mechanical shaker and direct electrical excitation through the swept-sine method. Present results show that this novel method can be a promising technique to easily pattern each of multiple electrodes and to implement the biomimetic motion of the polymer actuators with good mechanical bending performance.

  • PDF

A Study on Grasping Control of Robotic Hand Fingers (로봇 핸드핑거의 파지제어에 관한 연구)

  • Shim, Byoung-Kyun;Jung, Yang-Guen;Park, In-Man;hwang, Won-Jun;Kang, Un-Wook;Han, Sung-Hyun
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.16 no.4
    • /
    • pp.141-145
    • /
    • 2013
  • This paper is the development of industrial robotic hand system and the design methods of industrial robot hand that can mimic human fingers motion. In order to overcome problems incurred during the reduction of the mobility, this study focuses on analyzing human hand structure and finger movements from an anatomical point of view. As a result, distinctive features that improve the discovered stability in constraints for range of motion in the fingers is reflected in this design concept. A 4-bar Linkage is used in robot finger structure. Lastly, there were experiments to inspect the developed robot hands performance. The developed robot hand has many potential applications and can be in many different fields.

Confocal Microscopy of Colloidal Suspensions

  • Kim, Jin Young;Weon, Byung Mook
    • Applied Microscopy
    • /
    • v.44 no.1
    • /
    • pp.30-33
    • /
    • 2014
  • Colloidal systems or colloids consist of microparticles or nanoparticles (solute) uniformly suspended in a liquid (solvent), also called colloidal suspensions. They can mimic and exhibit microscopic or atomic aspects of molecular and atomic systems. They have been increasingly studied because of their similarity with atomic systems. They can be microscopically observed by optical microscopes because they are large enough in size and slow in motion to be monitored; microscopic methods are very useful and powerful in research on colloidal systems. Recently, confocal laser microscopy has been known as a powerful tool to obtain information of real-space and real-time behaviors of colloidal suspensions. In particular, it is possible to exactly track individual colloids in three dimensions with confocal microscopy. In this article, we briefly discuss the usefulness of confocal microscopy in colloidal systems that are currently used as model systems to resolve important questions in materials science.