• Title/Summary/Keyword: Motion errors

Search Result 627, Processing Time 0.023 seconds

Observer Based Adaptive Control of Longitudinal Motion of Vehicles (관측자를 이용한 직진 주행 차량의 적응 제어)

  • Kim, Eung-Seok;Kim, Dong-Hun;Yang, Hai-Won
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.50 no.3
    • /
    • pp.130-135
    • /
    • 2001
  • In this paper, an observer-based adaptive controller is proposed to control the longitudinal motion of vehicles. The standard gradient method will be used to estimate the vehicle parameters, mass, time constant, etc. The nonlinear model between the driving force and the vehicle acceleration will be chosen to design the state observer for the vehicle velocity and acceleration. It will be shown that the proposed observer is exponentially stable, and that the adaptive controller proposed on this paper is stable. It will be proved that the errors of the relative distance, velocity and acceleration converge to zero asymptotically fast, and that the overall system is also asymptotically stable. The simulation results are presented to investigate the effectiveness of the proposed method.

  • PDF

A Study on the Actively Controlled Aerostatic Journal Bearing using Cylindrical Capacitance Displacement Sensor (원통형 변위센서를 장착한 능동 공기 베어링에 관한 연구)

  • Park, Sang-Shin;Kim, Gyu-Ha
    • Tribology and Lubricants
    • /
    • v.24 no.1
    • /
    • pp.34-43
    • /
    • 2008
  • In this paper, an actively controlled aerostatic bearing is studied to overcome the defects of air bearing such as low stiffness and damping coefficients. The actively controlled aerostatic bearing is composed of aerostatic bearings, non-contact type of displacement sensors, piezoelectric actuators and controllers. The cylindrical capacitance sensor (CCS) is used as the displacement sensor. The reason for using CCS instead of the commercial gap sensor is that it can give us the pure error motion of the spindle because it removes the roundness error or the geometric errors in the spindle. The controller is designed by the state space equation and quadratic optimal control theory. The characteristic data of the actively controlled aerostatic bearing system in the frequency domain are presented and the stiffness and damping coefficients of the bearing are mentioned. This paper shows the possibility to reduce the motion error up to 6000 rpm.

Parameter Sensitivity Analysis of Autonomous Robot Vehicle for Trajectory Error and Friction Force (자율 주행 반송차의 궤적 오차와 마찰력에 대한 매개 변수의 민감도 해석)

  • 김동규;박기환;김수현;곽윤근
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.4 no.2
    • /
    • pp.115-126
    • /
    • 1996
  • In order to obtain the principal design data for developing the Autonomous Robot Vehicle(ARV), Sensitivity analysis on the trajectory error and friction force with respect to the dynamic parameters is performed. In the straight motion, the trajectory error has been proved to be much affected by the mass variance of the ARV while the lateral friction force is much affected by the location of the mass center. In the curved motion, the effect of mass and moment of inertia is considered importantly. In addition, the lateral offset gives more effect than the geometric dimension of the ARV on the trajectory errors and friction force.

  • PDF

Motion Analysis of a Moving Object using one Camera and Tracking Method (단일 카메라와 Tracking 기법을 이용한 이동 물체의 모션 분석)

  • Shin, Myong-Jun;Son, Young-Ik;Kim, Kab-Il
    • Proceedings of the KIEE Conference
    • /
    • 2005.07d
    • /
    • pp.2821-2823
    • /
    • 2005
  • When we deal with the image data through camera lens, much works are necessary for removing image distortions and obtaining accurate informations from the raw data. However, the calibration process is very complicated and requires many trials and errors. In this paper, 3 new approach to image processing is presented by developing a H/W vision system with a tracking camera. Using motor control with encoders the proposed tracking method tells us exact displacements of a moving object. Therefore this method does not require any calibration process for pin cusion. Owing to the mobility one camera covers wide ranges and, by lowering its height, the camera also obtains high resolution of the image. We first introduce the structure of the motion analysis system. Then the construced vision system is investigated by some experiments.

  • PDF

65nm급 300mm Wafer 세정조 개발을 위한 유동 특성연구

  • Kim, Jin-Tae;Kim, Gwang-Seon;Lee, Seung-Hui;Jeong, Eun-Mi
    • Proceedings of the Korean Society Of Semiconductor Equipment Technology
    • /
    • 2007.06a
    • /
    • pp.174-178
    • /
    • 2007
  • The cleaning process to remove small particles, ions, and other polluted sources is one of the major parts in the recent semiconductor industry because it can cause fatal errors on the quality of the final products. According to the other reports, the major factors of bath's fluid motion are the cleaning method, nozzle, the geometry (of bath, guide and wafer), and the position (of guide and wafer). So to enhance cleaning efficiency in the bath, these factors must be controlled. The purpose of this study is to analyze and visualize fluid motion in the cleaning bath as basic data for designing the nozzle system and finding the process control parameters. For that, we used the general CFD code FLUENT.

  • PDF

New Algorithm for Recursive Estimation in Linear Discrete-Time Systems with Unknown Parameters

  • Shin Vladimir;Ahn Jun-Il;Kim Du-Yong
    • International Journal of Control, Automation, and Systems
    • /
    • v.4 no.4
    • /
    • pp.456-465
    • /
    • 2006
  • The problem of recursive filtering far linear discrete-time systems with uncertainties is considered. A new suboptimal filtering algorithm is herein proposed. It is based on the fusion formula, which represents an optimal mean-square linear combination of local Kalman estimates with weights depending on cross-covariances between local filtering errors. In contrast to the optimal weights, the suboptimal weights do not depend on current measurements, and thus the proposed algorithm can easily be implemented in real-time. High accuracy and efficiency of the suboptimal filtering algorithm are demonstrated on the following examples: damper harmonic oscillator motion and vehicle motion constrained to a plane.

Fuzzy Control of a Sway and Skew of a Spreader by Using Four Auxiliary Cables

  • Lee, Jeong-Woo;Kim, Doo-Hyeong;Park, Kyeong-Taik
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.1723-1728
    • /
    • 2005
  • This article describes the fuzzy control of the 3-dimensional motion of the container cranes used in dockside container terminals. The container is suspended by four flexible cables via spreader, and due to the disturbances such as the wind and acceleration of cranes, the container undergoes translational(sway) and rotational position errors. And due to the uncertainty of weight and rotational inertia, accurate position control of container crane is difficult to realize. This paper, based on the analysis of 3-dimensional dynamics of container moving systems, describes the design of the fuzzy controller, which does not require the computation time to optimize the distribution of cable tension. The developed controller is shown effective in controlling the container position in the presence of gust and parameter uncertainties.

  • PDF

Gain-scheduling of Acceleration Estimator for Low-velocity Measurement with Encoders

  • Son, Seung-Woo;Lee, Sang-Hun;Hur, Jong-Sung
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.1853-1857
    • /
    • 2005
  • In most of motor-driven motion control systems, an encoder is used to measure a position of the motor and the velocity information is obtained by measuring the position increment over a sampling period. The quantization effect due to limited resolution of the encoder induces some measurement errors, and consequently causes deterioration of the motion performance especially in low velocity. In this paper, we propose a gain-scheduled acceleration estimator which works in wider velocity range than the original acceleration estimator. We investigate and analyze characteristics of the velocity measurement mechanism which takes into account the quantization effect of the encoder. Next, we introduce the acceleration estimator and propose a gain-scheduled acceleration estimator. The bandwidth of the gain-scheduled acceleration estimator is automatically adjusted by the velocity command. Finally, its performance is evaluated by simulation and experiment, and the results are compared with those of a conventional method and the original acceleration estimator.

  • PDF

Control Program for Dexterous Manipulation by Robotic Hand (물체의 안정한 조작을 위한 동작의 계획과 운동의 실현)

  • Hwang Chang-Soon
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.29 no.4 s.235
    • /
    • pp.540-554
    • /
    • 2005
  • This paper presents a motion planning and control method for the dexterous manipulation with a robotic hand. For a given trajectory of an object, a simulation system calculates the necessary joint displacements and contact forces at the fingertip surfaces. These joint displacements and contact forces are the reference inputs to the control loops of the robotic fingers. A task is decomposed into a set of primitive motions, and each primitive motion is executed using the planned output of the simulation system as the reference. Force sensors and dynamic tactile sensors are used to adapt to errors and uncertainties encountered during manipulation. Several experimental results are presented.

A Study on the real-time NURBS Interpolation using 2-stage interpolation (2중 보간법을 이용한 실시간 NURBS 보간방법에 관한 연구)

  • Park Jinho
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.13 no.6
    • /
    • pp.56-63
    • /
    • 2004
  • The real-time NURBS interpolation method using 2-stage interpolation is studied. The 2-stage interpolation method that compensates for interpolation errors within machine BLU is proposed. The interpolation result was filtered by an Acceleration/Jerk limitation equation. Through this 2-stage interpolation, both the interpolation error condition and the motion kinematics could be satisfied. Using computer simulation in which interpolation results are evaluated by a numerical iteration method, it is shown that the 2-stage interpolation algerian could interpolate target curves precisely with geometric and dynamic contentment. The proposed algorithm was implemented in the CNC simulator system and an experimental un was conducted to identify the real-time adaptation.