• 제목/요약/키워드: Motion equations

검색결과 2,308건 처리시간 0.027초

LM 가이드 상에서 건마찰 접촉을 하면서 운동하는 Cross Head의 사행동에 관한 연구 (A Study on the Snake Motion of a Machine Tool Cross-Head Moving with Dry Friction on LM Guides)

  • 최영휴
    • 한국공작기계학회:학술대회논문집
    • /
    • 한국공작기계학회 2000년도 춘계학술대회논문집 - 한국공작기계학회
    • /
    • pp.708-713
    • /
    • 2000
  • This paper reviews the concepts of the snake motion which can be often observed on the bodies moving along guide rails. A simple modelling is proposed in order to analyze the snake motion of the cross head assembly and force and moment equilibrium equations are established. It is determined the critical conditions at which snake motion just brings about. Some possible methods to reduce or prevent snake motion are discussed in detail.

  • PDF

회전 외팔보의 유한요소 해석 (A Finite Element Analysis for a Rotating Cantilever Beam)

  • 정진태;유홍희;김강성
    • 대한기계학회논문집A
    • /
    • 제25권11호
    • /
    • pp.1730-1736
    • /
    • 2001
  • A finite element analysis for a rotating cantilever beam is presented in this study. Based on a dynamic modeling method using the stretch deformation instead of the conventional axial deformation, three linear partial differential equations are (derived from Hamilton's principle. Two of the linear differential equations show the coupling effect between stretch and chordwise deformations. The other equation is an uncoupled one for the flapwise deformation. From these partial differential equations and the associated boundary conditions, two weak forms are derived: one is for the chordwise motion and the other is fur the flptwise motion. The weak farms are spatially discretized with newly defined two-node beam elements. With the discretized equations or the matrix-vector equations, the behaviors of the natural frequencies are investigated for the variation of the rotating speed.

기하학적 비선형성을 고려한 종단 질량을 갖는 회전하는 외팔보의 모달 분석 (Modal Analysis for the Rotating Cantilever Beam with a Tip Mass Considering the Geometric Nonlinearity)

  • 김형래;정진태
    • 한국소음진동공학회논문집
    • /
    • 제26권3호
    • /
    • pp.281-289
    • /
    • 2016
  • In this paper, a new dynamic model for modal analysis of a rotating cantilever beam with a tip-mass is developed. The nonlinear strain such as von Karman type and the corresponding linearized stress are used to consider the geometric nonlinearity, and Euler-Bernoulli beam theory is applied in the present model. The nonlinear equations of motion and the associated boundary conditions which include the inertia of the tip-mass are derived through Hamilton's principle. In order to investigate modal characteristics of the present model, the linearized equations of motion in the neighborhood of the equilibrium position are obtained by using perturbation technique to the nonlinear equations. Since the effect of the tip-mass is considered to the boundary condition of the flexible beam, weak forms are used to discretize the linearized equations. Compared with equations related to stiffening effect due to centrifugal force of the present and the previous model, the present model predicts the dynamic characteristic more precisely than the another model. As a result, the difference of natural frequencies loci between two models become larger as the rotating speed increases. In addition, we observed that the mode veering phenomenon occurs at the certain rotating speed.

Dynamic analysis of deployable structures using independent displacement modes based on Moore-Penrose generalized inverse matrix

  • Xiang, Ping;Wu, Minger;Zhou, Rui Q.
    • Structural Engineering and Mechanics
    • /
    • 제54권6호
    • /
    • pp.1153-1174
    • /
    • 2015
  • Deployable structures have gained more and more applications in space and civil structures, while it takes a large amount of computational resources to analyze this kind of multibody systems using common analysis methods. This paper presents a new approach for dynamic analysis of multibody systems consisting of both rigid bars and arbitrarily shaped rigid bodies. The bars and rigid bodies are connected through their nodes by ideal pin joints, which are usually fundamental components of deployable structures. Utilizing the Moore-Penrose generalized inverse matrix, equations of motion and constraint equations of the bars and rigid bodies are formulated with nodal Cartesian coordinates as unknowns. Based on the constraint equations, the nodal displacements are expressed as linear combination of the independent modes of the rigid body displacements, i.e., the null space orthogonal basis of the constraint matrix. The proposed method has less unknowns and a simple formulation compared with common multibody dynamic methods. An analysis program for the proposed method is developed, and its validity and efficiency are investigated by analyses of several representative numerical examples, where good accuracy and efficiency are demonstrated through comparison with commercial software package ADAMS.

삼중레이스를 갖는 자동평형장치의 동적 해석 (Dynamic Analysis of an Automatic Ball Balancer with Triple Races)

  • 좌성훈;조은형;손진승;박준민;정진태
    • 대한기계학회논문집A
    • /
    • 제26권4호
    • /
    • pp.764-774
    • /
    • 2002
  • Dynamic behaviors are analyzed for an automatic ball balancer (ABB) with triple races, which is a device to reduce the unbalanced mass of optical disk drives (ODD) such as CD-ROM or DVD drives. The nonlinear equations of motion are derived by using Lagrange's equations with the polar coordinate system. It is shown that the polar coordinate system provides the complete stability analysis while the rectangular coordinate system used in other previous studies has limitations on the stability analysis. For the stability analysis, the equilibrium positions and the linearized perturbation equations are obtained by the perturbation method. Based on the linearized equations, the stability of the system is analyzed around the equilibrium positions; furthermore, to confirm the stability, the time responses for the nonlinear equations of motion are computed by using a time integration method and experimental analyses are performed. Theoretical and experimental results show a superiority of the ABB with triple races.

회전하는 환상 디스크의 면내 고유진동 해석 (In-plane Natural Vibration Analysis of a Rotating Annular Disk)

  • 송승관;곽동희;김창부
    • 한국소음진동공학회논문집
    • /
    • 제19권2호
    • /
    • pp.208-216
    • /
    • 2009
  • In this paper, we present the equations of motion by which the natural vibration of a rotating annular disk can be analyzed accurately. These equations are derived from the theory of finite deformation and the principle of virtual work. The radial displacements of annular disk at the steady state where the disk is rotating at a constant angular velocity are determined by non-linear static equations formulated with 1-dimensional finite elements in radial direction. The linearlized equations of the in-plane vibrations at the disturbed state are also formulated with 1-dimensional finite elements in radial direction along the number of nodal diameters. They are expressed as in functions of the radial displacements at the steady state and the disturbed displacements about the steady state. In-plane static deformation modes of an annular disk are used as the displacement functions for the interpolation functions of the 1-dimensional finite elements. The natural vibrations of an annular disk with different boundary conditions are analyzed by using the presented model and the 3-dimensional finite element model to verify accuracy of the presented equations of motion. Its results are compared and discussed.

Flexure Analysis of Inertial Navigation Systems

  • Kim, Kwang-Jin;Park, Chan-Gook;Park, Jai-Yong
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2004년도 ICCAS
    • /
    • pp.1958-1961
    • /
    • 2004
  • Ring Laser Gyroscopes used as navigational sensors inherently experience a lock-in region, where very low rotational rates are not measurable. Most RLG manufacturers use a mechanical dither motor that applies a small oscillatory rotational motion larger than this region to resolve this problem. Any input acceleration that bends this dithering axis causes flexure error, which is a noncommutative error that can not be compensated by simply using integrated gyro sensor output. This paper introduces noncommutative error equations that define attitude errors caused by flexure errors. In this paper, flexure error is classified as sensor level error if the sensing axis coincides with the dithering axis and as system level error if the two axes do not coincide. The relationship between gyro output and the rotation vector is introduced and is used to define the coordinate transformation matrix and angular motion. Equations are derived for both sensor level and system level flexure error analysis. These equations show that RLG based INS attitude error caused by flexure is directly proportional to time, amount of input acceleration and the dynamic frequency of the vehicle.

  • PDF

Differential transform method and Adomian decomposition method for free vibration analysis of fluid conveying Timoshenko pipeline

  • Bozyigit, Baran;Yesilce, Yusuf;Catal, Seval
    • Structural Engineering and Mechanics
    • /
    • 제62권1호
    • /
    • pp.65-77
    • /
    • 2017
  • The free vibration analysis of fluid conveying Timoshenko pipeline with different boundary conditions using Differential Transform Method (DTM) and Adomian Decomposition Method (ADM) has not been investigated by any of the studies in open literature so far. Natural frequencies, modes and critical fluid velocity of the pipelines on different supports are analyzed based on Timoshenko model by using DTM and ADM in this study. At first, the governing differential equations of motion of fluid conveying Timoshenko pipeline in free vibration are derived. Parameter for the nondimensionalized multiplication factor for the fluid velocity is incorporated into the equations of motion in order to investigate its effects on the natural frequencies. For solution, the terms are found directly from the analytical solution of the differential equation that describes the deformations of the cross-section according to Timoshenko beam theory. After the analytical solution, the efficient and easy mathematical techniques called DTM and ADM are used to solve the governing differential equations of the motion, respectively. The calculated natural frequencies of fluid conveying Timoshenko pipelines with various combinations of boundary conditions using DTM and ADM are tabulated in several tables and figures and are compared with the results of Analytical Method (ANM) where a very good agreement is observed. Finally, the critical fluid velocities are calculated for different boundary conditions and the first five mode shapes are presented in graphs.

진동하는 윗벽면을 가진 정방형 웅덩이 안에서의 흐름 (Analysis of flow in a square cavity with an oscillating top wall)

  • 민병광;장근식
    • 대한기계학회논문집B
    • /
    • 제21권3호
    • /
    • pp.392-404
    • /
    • 1997
  • The flow induced by the oscillatory motion of a solid body is important in a number of practical problems. As the solid boundary oscillates harmonically, there is steady streaming motion invoked by the Reynolds stresses, which could cause extensive migration of the fluid during a period of fluid motion. We here analyzed the flow in a square cavity with an oscillating top wall for the parameters which make the time derivatives and the convective terms equally important in the entire cavity flow. The full Navier-Stokes equations are solved by the second-order time accurate Momentum Coupling Method which is devised by the authors. The particular numerical scheme does not need subiteration at each time step which is usually a required process to calculate the incompressible Navier-Stokes equations. The effect of two parameters, the Reynolds number and the frequency parameter, on the oscillatory flow has been investigated.

이동질량에 의한 보의 횡진동저감을 위한 모델링 및 압전작동기를 이용한 최적제어 (Modeling and Optimal Control with Piezoceramic Actuators for Transverse Vibration Reduction of Beam under a Traveling Mass)

  • 성윤경;류봉조
    • 한국정밀공학회지
    • /
    • 제16권12호
    • /
    • pp.126-132
    • /
    • 1999
  • The paper presents the modeling and optimal control for the reduction of transverse vibration of simply supported beam under a moving mass. The equations of motion are derived by using assumed mode method. The coriolis and centripetal accelerations are accommodated in the equations of motion to account for the dynamic effect of the traveling mass. In order to reduce the transverse vibration of the beam, an optimal controller with full state feedback is designed based on the linearized equations of motion. The optimal actuator locations are determined with the evaluation of an optimal cost functional defined by the worst initial condition with the trade-off of controlled mode performance. Numerical simulations are performed with respect to various velocities and different traveling masses. Even if the velocity of the traveling mass reaches to the critical speed which can cause the resonance of the beam, the controller with two piezoelectric actuators shows the excellent performance under severe time-varying disturbances of the system.

  • PDF