• Title/Summary/Keyword: Motion environment

Search Result 1,319, Processing Time 0.03 seconds

Motion Retargetting Simplification for H-Anim Characters (H-Anim 캐릭터의 모션 리타겟팅 단순화)

  • Jung, Chul-Hee;Lee, Myeong-Won
    • Journal of KIISE:Computing Practices and Letters
    • /
    • v.15 no.10
    • /
    • pp.791-795
    • /
    • 2009
  • There is a need for a system independent human data format that doesn't depend on a specific graphics tool or program to use interoperable human data in a network environment. To achieve this, the Web3D Consortium and ISO/IEC JTC1 WG6 developed the international draft standard ISO/IEC 19774 Humanoid Animation(H-Anim). H-Anim defines the data structure for an articulated human figure, but it does not yet define the data for human motion generation. This paper discusses a method of obtaining compatibility and independence of motion data between application programs, and describes a method of simplifying motion retargetting necessary for motion definition of H-Anim characters. In addition, it describes a method of generating H-Anim character animation using arbitrary 3D character models and arbitrary motion capture data without any inter-relations, and its implementation results.

Xenomai-based Embedded Controller for High-Precision, Synchronized Motion Applications (고정밀 동기 모션 제어 응용을 위한 Xenomai 기반 임베디드 제어기)

  • Kim, Chaerin;Kim, Ikhwan;Kim, Taehyoun
    • KIISE Transactions on Computing Practices
    • /
    • v.21 no.3
    • /
    • pp.173-182
    • /
    • 2015
  • Motion control systems are widely deployed in various industrial automation processes. The motion controller, which is a key element of motion control systems, has stringent real-time constraints. The controller must provide a short and deterministic control message transmission cycle, and minimize the actuation deviation among motor drives. To meet these requirements, hardware-based proprietary controllers have been prevalent. However, since it is becoming difficult for such an approach to meet increasing needs of system interoperability and scalability, nowadays, software-based universal motion controllers are regarded as their substitutes. Recently, embedded motion controller solutions are gaining attention due to low cost and relatively high performance. In this paper, we designed and implemented an embedded motion controller on an ARM-based evaluation board by using Xenomai real-time kernel and other open source software components. We also measured and analyzed the performance of our embedded controller under a realistic test-bed environment. The experimental results show that our embedded motion controller can provide relatively deterministic performance with synchronized control of three motor axis at 2 ms control cycle.

Generation of Humanoid Walking Motion Adapted to the Ground's Sliding Properties (지면의 미끄러운 정도에 따른 캐릭터의 걷기 동작 생성)

  • Lee KumHee;Song MiYoung;Cho HyungJe
    • The KIPS Transactions:PartB
    • /
    • v.12B no.2 s.98
    • /
    • pp.157-166
    • /
    • 2005
  • In 3D virtual environment the description of character' s movement that has utilized the conventional key-frame technique is gradually being developed toward the application of motion control method to generate more realistic and natural motion. Even the motion control method, however, has the limitation for expression of character's motion adapted to the ground properties of virtual world. That is, the walking motions of character are not only, for the most part, so uniform simple and repeated often as to feel to be tedious, but also the unnatural motion in which the tips of the toes soak through a plane or float in the air discording with the conditions of terrain lowers the semblance of reality. This paper proposes an adaptive motion control method for human figure locomotion in virtual environments or games, in which the walking motion is dynamiccally adapted to the ground's sliding properties. We compute an optimal parameters for one cycle of walking motion adapted to the ground properties by combining the coefficient of friction and centripetal force, and therefrom we induce a set of nonskid speed corresponding to various sliding properties of the ground.

Detection the Biomedical Information using the Piezo Film Sensor (Piezo Film Sensor를 이용한 생체 정보 검출)

  • Lee, H.W.;Seo, H.;Jeong, W.G.;Jang, D.B.;Lee, G.K.
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.3 no.3
    • /
    • pp.14-21
    • /
    • 2010
  • For the ubiquitous healthcare environment, real-time measurement of biomedical signals and accuracy of the measured biomedical information are very important. In addition, it is important to develop a healthcare device with low power In this paper, the synchronized pulse in a heartbeat was detected from the radial artery using the piezo film sensor, in order to eliminate inconvenience to wear a pulse detection finger probe. We can get a best output after applying the adaptive noise canceller using two piezo film sensor signals, pulse signal having motion artifacts and motion artifacts reference signal. To detect heartbeat, we use maximum point detection method from pulse removed motion artifacts.

  • PDF

A Study on Precise Control of Autonomous Travelling Robot Based on RVR (RVR에 의한 자율주행로봇의 정밀제어에 관한연구)

  • Shim, Byoung-Kyun;Cong, Nguyen Huu;Kim, Jong-Soo;Ha, Eun-Tae
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.17 no.2
    • /
    • pp.42-53
    • /
    • 2014
  • Robust voice recognition (RVR) is essential for a robot to communicate with people. One of the main problems with RVR for robots is that robots inevitably real environment noises. The noise is captured with strong power by the microphones, because the noise sources are closed to the microphones. The signal-to-noise ratio of input voice becomes quite low. However, it is possible to estimate the noise by using information on the robot's own motions and postures, because a type of motion/gesture produces almost the same pattern of noise every time it is performed. In this paper, we propose an RVR system which can robustly recognize voice by adults and children in noisy environments. We evaluate the RVR system in a communication robot placed in a real noisy environment. Voice is captured using a wireless microphone. Navigation Strategy is shown Obstacle detection and local map, Design of Goal-seeking Behavior and Avoidance Behavior, Fuzzy Decision Maker and Lower level controller. The final hypothesis is selected based on posterior probability. We then select the task in the motion task library. In the motion control, we also integrate the obstacle avoidance control using ultrasonic sensors. Those are powerful for detecting obstacle with simple algorithm.

Motion Visualization of a Vehicle Driver Based on Virtual Reality (가상현실 기반에서 차량 운전자 거동의 가시화)

  • Jeong, Yun-Seok;Son, Kwon;Choi, Kyung-Hyun
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.11 no.5
    • /
    • pp.201-209
    • /
    • 2003
  • Virtual human models are widely used to save time and expense in vehicle safety studies. A human model is an essential tool to visualize and simulate a vehicle driver in virtual environments. This research is focused on creation and application of a human model fer virtual reality. The Korean anthropometric data published are selected to determine basic human model dimensions. These data are applied to GEBOD, a human body data generation program, which computes the body segment geometry, mass properties, joints locations and mechanical properties. The human model was constituted using MADYMO based on data from GEBOD. Frontal crash and bump passing test were simulated and the driver's motion data calculated were transmitted into the virtual environment. The human model was organized into scene graphs and its motion was visualized by virtual reality techniques including OpenGL Performer. The human model can be controlled by an arm master to test driver's behavior in the virtual environment.

Car-following Motion Planning for Autonomous Vehicles in Multi-lane Environments (자율주행 차량의 다 차선 환경 내 차량 추종 경로 계획)

  • Seo, Changpil;Yi, Kyoungsu
    • Journal of Auto-vehicle Safety Association
    • /
    • v.11 no.3
    • /
    • pp.30-36
    • /
    • 2019
  • This paper suggests a car-following algorithm for urban environment, with multiple target candidates. Until now, advanced driver assistant systems (ADASs) and self-driving technologies have been researched to cope with diverse possible scenarios. Among them, car-following driving has been formed the groundwork of autonomous vehicle for its integrity and flexibility to other modes such as smart cruise system (SCC) and platooning. Although the field has a rich history, most researches has been focused on the shape of target trajectory, such as the order of interpolated polynomial, in simple single-lane situation. However, to introduce the car-following mode in urban environment, realistic situation should be reflected: multi-lane road, target's unstable driving tendency, obstacles. Therefore, the suggested car-following system includes both in-lane preceding vehicle and other factors such as side-lane targets. The algorithm is comprised of three parts: path candidate generation and optimal trajectory selection. In the first part, initial guesses of desired paths are calculated as polynomial function connecting host vehicle's state and vicinal vehicle's predicted future states. In the second part, final target trajectory is selected using quadratic cost function reflecting safeness, control input efficiency, and initial objective such as velocity. Finally, adjusted path and control input are calculated using model predictive control (MPC). The suggested algorithm's performance is verified using off-line simulation using Matlab; the results shows reasonable car-following motion planning.

Development of Joint-Based Motion Prediction Model for Home Co-Robot Using SVM (SVM을 이용한 가정용 협력 로봇의 조인트 위치 기반 실행동작 예측 모델 개발)

  • Yoo, Sungyeob;Yoo, Dong-Yeon;Park, Ye-Seul;Lee, Jung-Won
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.8 no.12
    • /
    • pp.491-498
    • /
    • 2019
  • Digital twin is a technology that virtualizes physical objects of the real world on a computer. It is used by collecting sensor data through IoT, and using the collected data to connect physical objects and virtual objects in both directions. It has an advantage of minimizing risk by tuning an operation of virtual model through simulation and responding to varying environment by exploiting experiments in advance. Recently, artificial intelligence and machine learning technologies have been attracting attention, so that tendency to virtualize a behavior of physical objects, observe virtual models, and apply various scenarios is increasing. In particular, recognition of each robot's motion is needed to build digital twin for co-robot which is a heart of industry 4.0 factory automation. Compared with modeling based research for recognizing motion of co-robot, there are few attempts to predict motion based on sensor data. Therefore, in this paper, an experimental environment for collecting current and inertia data in co-robot to detect the motion of the robot is built, and a motion prediction model based on the collected sensor data is proposed. The proposed method classifies the co-robot's motion commands into 9 types based on joint position and uses current and inertial sensor values to predict them by accumulated learning. The data used for accumulating learning is the sensor values that are collected when the co-robot operates with margin in input parameters of the motion commands. Through this, the model is constructed to predict not only the nine movements along the same path but also the movements along the similar path. As a result of learning using SVM, the accuracy, precision, and recall factors of the model were evaluated as 97% on average.

A Study on the Feedforward Control Algorithm for Dynamic Positioning System Using Ship Motion Prediction (선체운동 예측을 이용한 Dynamic Positioning System의 피드포워드 제어 알고리즘에 관한 연구)

  • Song, Soon-Seok;Kim, Sang-Hyun;Kim, Hee-Su;Jeon, Ma-Ro
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.22 no.1
    • /
    • pp.129-137
    • /
    • 2016
  • In the present study we verified performance of feed-forward control algorithm using short term prediction of ship motion information by taking advantage of developed numerical simulation model of FPSO motion. Up until now, various studies have been conducted about thrust control and allocation for dynamic positioning systems maintaining positions of ships or marine structures in diverse sea environmental conditions. In the existing studies, however, the dynamic positioning systems consist of only feedback control gains using a motion of vessel derived from environmental loads such as current, wind and wave. This study addresses dynamic positioning systems which have feedforward control gain derived from forecasted value of a motion of vessel occurred by current, wind and wave force. In this study, the future motion of vessel is forecasted via Brown's Exponential Smoothing after calculating the vessel motion via a selected mathematical model, and the control force for maintaining the position and heading angle of a vessel is decided by the feedback controller and the feedforward controller using PID theory and forecasted vessel motion respectively. For the allocation of thrusts, the Lagrange Multiplier Method is exploited. By constructing a simulation code for a dynamic positioning system of FPSO, the performance of feedforward control system which has feedback controller and feedforward controller was assessed. According to the result of this study, in case of using feedforward control system, it shows smaller maximum thrust power than using conventional feedback control system.

Method for Increasing Stability by Reducing the Motion of a Lightweight Floating Body (경량 부유체의 운동 저감으로 안정성 증가방법에 관한 연구)

  • Seon-Tae Kim;Jea-Yong Ko;Yu-mi Han
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.29 no.4
    • /
    • pp.407-416
    • /
    • 2023
  • Demand for leisure facilities such as mooring facilities for berthing leisure vessels and floating pensions based on floating bodies is increasing owing to the rapid growth of the population and related industries for marine leisure activities. Owing to its relatively light weight as a fluid, inclination is easily generated by waves and surcharges flowing to the coast, resulting in frequent safety accidents because of the low stability. As a solution to this problem, a motion reduction device for floating bodies is proposed in this study. The device (motion reduction device based on the air pressure dif erence) was attached to a floating body and the effect was analyzed by comparing the results with those of a floating body without motion reduction. The effect analysis was further analyzed using a computer analysis test, and the method for increasing the stability of the floating body was studied, and its the effect was verified. Based on the analysis of the test results, the stability of the floating body increased with a motion damping device is higher than that of the floating body without a motion reducing device as the wave momentum reduces, owing to the air pressure difference. Therefore it was concluded that the use of such a device for reducing motion a floating body is useful not only for non-powered ships but also for powered and semi-submersible ships, and further research should be conducted by applying it to various fields.